Простейший акселерометр состоит из электрического контура. Колебательный LC контур: принцип действия, расчет, определение

Общие сведения

Акселерометры представляют собой датчики линейного ускорения и в этом качестве широко используются для измерения углов наклона тел, сил инерции, ударных нагрузок и вибрации. Они находят широкое применение на транспорте, в медицине, в промышленных системах измерения и управления, в инерциальных системах навигации. Промышленность изготавливает много разновидностей акселерометров, имеющих различные принципы действия, диапазоны измерения ускорений, массу, габариты и цены. Сравнение основных типов акселерометров дано в табл. 1. На рис. 1 показаны области, занимаемые акселерометрами различного типа на диаграмме «цена–качество».

Рис. 1. Диаграмма «цена–качество» для различных типов акселерометров

Современные технологии микрообработки позволяют изготовить интегральные акселерометры, имеющие малые габариты и низкую цену. В настоящее время изготавливаются ИМС акселерометров трех типов: пьезопленочные, объемные и поверхностные.

Таблица 1. Сравнительные характеристики акселерометров

Пленочные пьезоэлектрические акселерометры

Пленочные пьезоэлектрические датчики ускорения выполняются на основе многослойной пьезоэлектрической полимерной пленки. Многослойная пленка закреплена на подложке из окиси алюминия, и к ней присоединена инерционная масса из порошкового металла. При изменении скорости движения датчика в результате действия инерционных сил происходит деформация пленки. Благодаря пьезоэффекту возникает разность потенциалов на границах слоев пленки, зависящая от ускорения. Чувствительный элемент датчика обладает чрезвычайно высоким выходным сопротивлением, поэтому на подложке датчика ACH-01 компании Atochem Sensors имеется также полевой транзистор с малым током затвора, который представляет собой усилитель напряжения. Это позволяет измерять переменные ускорения со сравнительно низкой частотой. Датчики этого типа имеют плохую повторяемость характеристик в серийном производстве, высокую чувствительность к изменению температуры и давления. Они не могут контролировать постоянные ускорения и гравитационные силы. Основная область применения - схемы управления надувными подушками безопасности.

Объемные интегральные акселерометры

Примером объемного датчика может служить NAC-201/3 компании Lucas NovaSensor , предназначенный для применения в системах управления надувными подушками безопасности автомобилей. Этот датчик состоит из двух пластин кремния 1 и 2, которые сплавлены друг с другом (рис. 2). Тремя тонкими кремниевыми балками c, d и e, имеющимися в пластине 1, инерционная масса а соединена с кремниевой рамкой b на пластине 2. Эта масса соединяется с кремниевой рамкой механически с одного края (точки f на рис. 2). Каждая из коротких внешних (изгибных) балок содержит пару имплантированных пьезорезисторов, образующих полумост. Два полумоста соединяются в мостовую схему. Когда происходит столкновение автомобиля с препятствием, масса движется вниз, изгибая балки c, d, e и вызывая деформацию пьезорезисторов. Таким образом, датчик и расположенная вне кристалла электронная схема обработки сигналов создают при работе выходной сигнал напряжением от 50 до 100 мВ полной шкалы, вызываемый деформацией пьезорезисторов, включенных по схеме моста Уитстона.

Рис. 2. Интегральный акселерометр объемной конструкции

Поскольку к надежности системы управления надувными подушками безопасности предъявляются чрезвычайные требования (представьте себе последствия ложного срабатывания подушки безопасности на оживленной автостраде при скорости 150 км/час), датчик снабжен системой самоконтроля. Ключевую роль в системе самоконтроля играет резистор-возбудитель, который нагревается пропусканием через него электрического импульса с силой тока 50 мА, напряжением 9 В и длительностью 50 мс. Когда балка, расположенная в средней части пластины 1, нагревается, происходит ее удлинение, поскольку температурный коэффициент расширения кремния положителен. А так как концы ее закреплены, она прогибается, отклоняет инерционную массу и изгибает балку, содержащую пьезорезисторы. Эта балка смещается примерно на 3 мкм в том же направлении, что и масса при столкновении автомобиля с препятствием.

Рис. 3. Основной конструктивный блок элементарной ячейки датчика ускорения

Микросхема датчика не содержит схемы обработки сигнала измерительного моста. Варианты датчика отличаются тем, что NAC-203 содержит встроенные толстопленочные схемы, позволяющие произвести лазерную подстройку чувствительности и температурной коррекции в процессе производства, а в NAC-201 реализация этих функций предоставляется пользователю. Входное и выходное сопротивления измерительного моста модели NAC-201 равны 2 кОм. Полоса пропускания по уровню 3 дБ составляет 500 Гц. Резонансная частота приборов, смонтированных в полном соответствии с рекомендациями изготовителя, - не менее 10 кГц.

Рис. 4. Структурная схема ИМС акселерометра ADXL50

Интегральные датчики ускорения объемной конструкции имеют ряд недостатков. Во-первых, они сложны в производстве, поскольку операции формирования объемных структур не очень просто совмещаются со стандартными поверхностными интегральными технологиями. Во-вторых, желательно иметь датчик минимально возможных размеров на схемном кристалле также минимально возможных размеров. Уменьшение размеров кристалла дает повышение его механической прочности и снижение стоимости. В то же время в датчике объемной конструкции только на размещение чувствительного элемента требуется от 6,5 до 16 мм2 площади кристалла. Размещение на кристалле схем формирования сигнала может увеличить эту площадь еще в два раза. Поэтому, в частности, один из датчиков ускорения компании Motorola имеет двухкристальную конструкцию . На одном кристалле выполнен объемный чувствительный элемент, а на другом - схема обработки сигнала.

Поверхностные интегральные акселерометры

Компания Analog Devices изготавливает семейство акселерометров ADXLххх поверхностной конструкции. Первым в этом семействе идет ADXL50, серийный выпуск которого был начат в 1991 г.

Весь кристалл акселерометра размером 3,05 3,05 мм занят главным образом схемами формирования сигнала, которые окружают миниатюрный датчик ускорения размером 1ґ1 мм, расположенный в его центре. Датчик представляет собой дифференциальную конденсаторную структуру с воздушным диэлектриком, обкладки которого вырезаны (вытравлены) из плоского куска поликремниевой пленки толщиной 2 мкм. Неподвижные обкладки этого конденсатора представляют собой простые консольные стержни, расположенные на высоте 1 мкм от поверхности кристалла в воздухе на поликремниевых столбиках-анкерах, приваренных к кристаллу на молекулярном уровне.

На рис. 3 показан основной конструктивный блок элементарной ячейки датчика. Фактически датчик имеет 54 элементарных ячейки для измерения ускорения, но для простоты рисунок показывает только одну ячейку. Инерционная масса датчика ускорения при изменении скорости перемещения кристалла смещается относительно остальной части кристалла. Ее пальцеобразные выступы образуют подвижную обкладку конденсатора переменной емкости. С каждого конца эта структура опирается на столбики-анкеры, аналогичные по конструкции держателям неподвижных обкладок. Растяжки по концам инерционной массы, удерживающие ее на весу, являются как бы механическими пружинами постоянной упругости, ограничивающими перемещение пробной массы и ее возврат в исходное положение. Говоря другими словами, сила инерции при воздействии ускорения

уравновешивается силой упругости пружины

где m - масса, a - ускорение, k - жесткость пружины, x - перемещение массы относительно исходного состояния. Отсюда следует, что a = x (k / m), причем k/m - конструктивный параметр датчика.

Поскольку перемещение инерционной массы должно происходить в плоскости поликремниевой пленки, ось чувствительности датчика лежит в этой плоскости, и, следовательно, она параллельна плоскости печатной платы, к которой припаивается датчик.

Рис. 6. Использование акселерометра для измерения наклона

Каждый из наборов неподвижных обкладок конденсатора (Y и Z) электрически соединен параллельно внутри схемного кристалла. В результате получается пара независимых конденсаторов X-Y и X-Z, подвижная обкладка которых образована всей совокупностью пальцеобразных выступов инерционной массы. Внутри кристалла эти три обкладки подключены ко встроенным схемам формирования сигнала акселерометра. В спокойном состоянии (движение с постоянной скоростью) все «пальцы» подвижной обкладки Х благодаря растяжкам находятся на одинаковом расстоянии от пар пальцев неподвижных обкладок. При каком-либо ускорении подвижные пальцы приближаются к одному из наборов неподвижных пальцев и удаляются от другого набора. В результате этого относительного перемещения соответствующие расстояния становятся неодинаковыми, и емкости между подвижной обкладкой и каждой из неподвижных обкладок изменяются.

Хотя в ИМС акселерометра ADXL50 датчик и схема формирования сигнала фактически представляют собой замкнутый контур с обратной связью и уравновешиванием сил, опишем вначале работу устройства при разомкнутой обратной связи. Противофазные сигналы прямоугольной формы частотой 1 МГц одинаковой амплитуды подаются от генератора соответственно на верхнюю и нижнюю обкладки Y и Z (рис. 4). Емкости CS1 и CS2 между неподвижными и подвижной обкладками при отсутствии ускорения одинаковы, поэтому на подвижную обкладку передаются сигналы одинаковой амплитуды. Разностный сигнал, поступающий на вход повторителя, равен нулю. При ускорении датчика разностный сигнал не равен нулю, причем его амплитуда зависит от величины смещения подвижной обкладки, а фаза определяется знаком ускорения.

Фазочувствительный демодулятор преобразует этот сигнал в низкочастотный (полосой от 0 до 1000 Гц), характеризующий величину и знак ускорения. Это напряжение поступает на предусилитель, с выхода которого сигнал идет на внешний вывод ИМС.

Рис. 7. Блок-схема двухосного акселерометра ADXL202

Чтобы уменьшить влияние температуры окружающей среды, временные изменения параметров, снизить нелинейность переходной характеристики акселерометра, разработчики ввели отрицательную обратную связь по положению инерционной массы. Для этого напряжение с выхода предусилителя через резистор 3 МОм подается на подвижные обкладки датчика. Это напряжение создает электростатические силы между подвижной и неподвижной обкладками, которые стремятся установить инерционную массу в исходное состояние. Поскольку мы имеем в этом случае следящую систему с высокой добротностью, инерционная масса никогда не будет отклоняться от своего исходного положения более чем на 0,01 мкм. В отсутствии ускорения выходное напряжение предусилителя равно VO = 1,8 В, при полном ускорении ±50 g VO = 1,8±1,5 В.

В более поздних моделях ИМС акселерометров инженеры компании Analog Devices отказались от обратной связи по положению инерционной массы. С одной стороны, это позволило почти в два раза уменьшить площадь кристалла датчика, повысить его экономичность, увеличить размах выходного напряжения, практически исключить внешние компоненты, снизить стоимость, но с другой стороны, увеличилось смещение инерционной массы, что привело к некоторому реальному ухудшению линейности.

Акселерометры семейства ADXL также снабжены системой самотестирования. В ADXL50 тестовый сигнал в виде последовательности прямоугольных импульсов низкой частоты подается на подвижную обкладку. Это вызывает колебания инерционной массы, аналогичные тем, которые вызываются воздействием инерционных сил. Выходное напряжение исправного датчика также будет изменяться с той же частотой.

Рис. 8. Упрощенная конструкция датчика ускорения микросхемы семейства XMMA

В моделях без обратной связи по положению только 42 ячейки датчика используются в схеме измерения ускорения. Остальные 12 входят в схему самотестирования. Самотестирование осуществляется подачей высокого логического уровня на вывод «SELF-TEST» микросхемы. При этом на подвижную часть датчика действует электростатическая сила, соответствующая приблизительно 20 % ускорения полной шкалы. Выходное напряжение ИМС исправного датчика пропорционально уменьшится. Таким образом проверяется работоспособность полной механической структуры и электрической схемы акселерометра.

Для того чтобы снизить требования к стабильности источника питания и сделать возможным питание акселерометров прямо от батарей, их выходное напряжение делают пропорциональным произведению ускорения на напряжение питания. В таком случае его следует включать по логометрической схеме, как это показано на рис. 5. В этой схеме удобно применить АЦП, который использует питающее напряжение в качестве опорного. Следует заметить, что между выходом акселерометра и входом УВХ АЦП должен быть буферный усилитель, так как выходной ток акселерометра изменяется в диапазоне ±100 мкА, и при достаточно высокой частоте выборок конденсатор УВХ не будет успевать заряжаться до напряжения на выходе акселерометра.

В настоящее время Analog Devices выпускает несколько моделей интегральных акселерометров: одноосные ADXL105, ADXL150, ADXL190 на максимальное ускорение ±5 g, ±50 g, ±100 g соответственно, и двухосные ADXL202, ADXL210 и ADXL250 на максимальное ускорение по обеим осям ±2 g, ±10 g и ±50 g соответтвенно. Датчики изготавливаются в основном в плоских керамических корпусах QC-14 с планарными выводами, причем оси, по которым измеряется ускорение, направлены параллельно плоскости выводов (то есть параллельно плоскости печатной платы). Вариант ADXL202Е выпускается в миниатюрном безвыводном кристаллоносителе LCC-8 размером 5ґ5ґ2 мм. Для удобства сопряжения с микроконтроллерами выходные сигналы ИМС ADXL202 и ADXL210 представляют собой прямоугольные импульсы постоянной частоты. Информация об ускорении отображается относительной длительностью импульсов g .

Интересное применение акселерометров с малым значением максимального измеряемого ускорения (и, соответственно, высокой чувствительностью) - определение угла наклона относительно горизонта. Это можно использовать в охранных системах автомобилей, для определения местоположения бура при бурении наклонных скважин и др.

Рис. 9. График зависимости разности емкостей конденсаторов из ячейки датчика ускорения от перемещения подвижной пластины

Выходное напряжение акселерометра пропорционально синусу угла наклона оси его чувствительности относительно горизонта. Для того чтобы определить этот угол однозначно, необходимо использовать двухосный акселерометр. Для этой цели почти идеально подходит ADXL202. Зависимости выходных сигналов этого датчика, приведенных к 1 g, от угла его наклона представлены на рис. 6.

Рис. 7, а показывает упрощенную блок-схему двухосного акселерометра ADXL202. Его выходными сигналами являются импульсы, относительная длительность которых пропорциональна ускорению. Такой тип выхода обеспечивает повышенную помехоустойчивость, передачу сигнала по одной линии и прием его любым микроконтроллером, имеющим таймер (АЦП не нужен!). Сигнал на выходе каждого канала датчика имеет форму, показанную на рис. 7, б, причем ускорение в единицах g рассчитывается по формуле:

Обратите внимание, что относительная длительность = 0,5 соответствует нулевому ускорению. Период импульсов Т2 не нужно измерять на каждом импульсе. Его нужно уточнять только при изменении температуры. Так как частота выходных импульсов одинакова для обоих каналов, период Т2 достаточно измерить только на одном канале. Эта величина устанавливается в пределе от 0,5 до 10 мс внешним резистором RSET. Недостатком акселерометров с ШИМ-выходом является необходимость применения весьма быстродействующих микроконтроллеров для получения высокой разрешающей способности при широкой полосе пропускания.

Завершая описание акселерометров компании Analog Devices, приведем несколько интересных цифр, характеризующих конструкцию и уровень технологии производства этих микросхем .

  • Масса инерционного грузика - 0,1 мкг.
  • Емкость каждой части дифференциального конденсатора - 0,1 пФ.
  • Минимальное обнаруживаемое отклонение емкости - 20 aФ (10–18 Ф).
  • Изменение емкости, соответствующее ускорению полной шкалы - 0,01 пФ.
  • Расстояние между обкладками конденсатора - 1,3 мкм.
  • Минимальное обнаруживаемое отклонение подвижных обкладок конденсатора - 0,2 ангстрема (пятая часть диаметра атома!).

Акселерометры семейства XMMA компании Motorola состоят из планарной емкостной ячейки датчика ускорения и КМОП-схемы нормализации сигнала, выполненных в отличие от ранних моделей , на одном кристалле. Чувствительный элемент (G-ячейка) занимает большую часть кристалла. Он сформирован из поликристаллического кремния посредством поверхностной микрообработки и состоит из двух неподвижных пластин, между которыми расположена пластина, закрепленная на упругом подвесе и способная перемещаться под действием инерционных сил (рис. 8). Когда центральная пластина отклоняется от среднего положения в результате ускорения, расстояние от нее до одной из неподвижных пластин увеличится на ту же самую величину, на которую расстояние до другой пластины уменьшится. Изменение расстояний характеризует ускорение. Ось чувствительности к ускорению направлена перпендикулярно поверхности пластинки кремния (чипа), поэтому датчики, изготавливаемые в DIP-корпусе, измеряют ускорение, направленное нормально к печатной плате. Для того чтобы сделать возможным измерение ускорений, направленных параллельно печатной плате, фирма выпускает эти датчики также и в корпусах SIP, в которых чип расположен перпендикулярно печатной плате.

Рис. 10. Блок-схема акселерометра MMAS500G

Пластины G-ячейки формируют два противовключенных конденсатора. При движении датчика с ускорением, направленным перпендикулярно плоскости пластин, подвижная пластина отклонится в направлении, противоположном ускорению, и произойдет перераспределение расстояний между пластинами. Емкости обоих конденсаторов изменятся в соответствии с формулой

где S - площадь пластин, e - диэлектрическая постоянная и x - расстояние между пластинами. Как видно, эта зависимость нелинейна. На рис. 9 приведен график зависимости разности емкостей этих конденсаторов (С1–С2) от перемещения подвижной пластины. Схемы определения рассогласования емкостей конденсаторов G-ячейки измеряют изменение напряжения на подвижной пластине (MMAS40G, MMAS250G, MMAS500G) или заряда на ней (XMMA1000, XMMA2000). Напряжение измеряется электрометрическим усилителем, а заряд - усилителем заряда. Судя по техническим описаниям этих микросхем, представленным фирмой-изготовителем, постоянное ускорение они не воспринимают. На рис. 10 приведена блок-схема акселерометра XMMAS500G, имеющего диапазон измеряемых ускорений 500 g. Сигнал с выхода электрометрического усилителя поступает на фильтр нижних частот 4-го порядка, а с него - на схему температурной компенсации.

Акселерометры компании Motorola также могут быть использованы в логометрическом включении.

Точность интегральных акселерометров

Статическая точность

Точность преобразования ускорения в электрический сигнал акселерометрами так же, как и точность датчиков другого типа, определяется величинами смещения нуля, погрешностью полной шкалы (или чувствительности), а также температурным и временным дрейфом этих параметров. Важными составляющими погрешности являются также погрешности линейности (нелинейность) и поперечная чувствительность. Смещение нуля и чувствительность акселерометров при нормальных условиях корректируются при изготовлении. Остаточная погрешность может быть уменьшена путем калибровки и запоминания калибровочных констант в памяти микроконтроллера. Калибровка акселерометра возможна двумя способами: на вибростенде с образцовым датчиком ускорения и с использованием силы тяжести.

Рис. 11. Графики ускорения и скорости интегрального акселерометра в условиях сильных продольных вибраций

Использование вибростенда имеет следующие преимущества:

  • возможность калибровки, в том числе и датчиков, восприимчивых только к переменному ускорению;
  • возможность калибровки датчиков с ускорениями, многократно превышающими g;

и недостатки:

  • требуется дорогостоящий вибростенд;
  • проблема закрепления датчика при калибровке на высоких g.

Преимущества применения силы тяжести для калибровки:

  • не требуется дорогостоящее оборудование;
  • метод мало чувствителен к погрешности установки датчика;

    и недостатки:

  • можно применить только для датчиков, восприимчивых к постоянному ускорению;
  • нельзя калибровать полную шкалу датчиков, способных преобразовывать большие ускорения.

Температурный дрейф смещения нуля и чувствительности также может быть скомпенсирован. Для этой цели некоторые модели (например, XMMA1000, ADXL105) снабжаются встроенными датчиками температуры.

Одной из причин нелинейности характеристики преобразования интегральных акселерометров с датчиками емкостного типа является нелинейная зависимость емкости конденсатора от расстояния между обкладками (см. рис. 9). При использовании усилителя заряда, как это сделано в XMMA1000, потенциал подвижной пластины постоянен и равен половине напряжения питания, которое мы будем считать равным 2V (см. рис. 8). В этом случае из формулы q = CV с учетом (1) следует, что приращение заряда подвижной обкладки при ее перемещении на расстояние x составит

Как видно, зависимость приращения заряда от изменения расстояния между пластинами нелинейна. Если в акселерометре применяется усилитель напряжения (электрометрический), то заряд конденсаторов датчика меняться не будет. Тогда приращение напряжения на подвижной пластине будет линейно зависеть от изменения расстояния между пластинами:

По указанным причинам акселерометр XMMA1000 (усилитель заряда) имеет типичную погрешность линейности 1 % от полной шкалы против 0,5 % у MMAS40G (усилитель напряжения). Акселерометры семейства ADXL имеют емкостный датчик дифференциального типа, неподвижные пластины которого питаются равными, но противофазными напряжениями возбуждения V1 и V2 с частотой 1 МГц. Поэтому комплексное действующее значение напряжения на средней пластине, согласно методу двух узлов, определяется формулой:

(3)

где - круговая частота возбуждения. С учетом того, что V1 = -V2, а

из (3) получим

Таким образом, зависимость напряжения на подвижных пластинах датчика от перемещения получается линейной. Акселерометры семейства ADXL имеют типовую погрешность линейности 0,2 %.

В в качестве еще одного источника погрешности указывается гистерезис (то есть неполная восстанавливаемость) при вибрациях и ударах. В фирменном описании микросхем никаких сведений о гистерезисе нет, но эксперименты по использованию интегральных акселерометров семейства ADXL для определения скоростей и перемещений, проведенные авторами этой статьи, показали, что при наличии вибраций большой амплитуды погрешность, обусловленная, по всей видимости, гистерезисом, может достигать совершенно недопустимых значений. По нашему мнению, этот гистерезис вызван тем, что при значительных ускорениях деформация растяжек, играющих роль пружин, может быть неупругой и при уменьшении ускорения инерционная масса либо очень медленно возвращается в исходное состояние (вязкая неупругость), либо не возвращается совсем. На рис. 11 приведены графики ускорения (а) и скорости (б) от времени акселерометра ADXL150, закрепленного на одном из концов стального стержня длиной 1,5 м, который перемещается с большими ускорениями на расстояние 0,5 м. Вследствие упругости стержня это перемещение сопровождается вибрацией довольно большой амплитуды с частотой приблизительно 300 Гц. График ускорения получен непосредственным считыванием сигнала акселерометра 12-разрядным АЦП с частотой выборки 80 кГц. График скорости является результатом численного интегрирования этих данных методом трапеций. В начале и в конце интервала наблюдения (0–0,9 с) скорость датчика равна нулю. На графике скорости (рис. 11, б), точки которого рассчитаны по данным акселерометра, погрешность конечного значения скорости составила примерно 1,25 м/с при максимальной скорости 3,5 м/с.

Рис. 12. Графики ускорения и скорости интегрального акселерометра при пониженной вибрации

На рис. 12 приведены графики ускорения (а) и скорости (б) того же датчика при близких параметрах движения, но закрепленного на более жесткой конструкции. Движение сопровождалось значительно меньшей продольной вибрацией. Как видно, погрешность определения скорости уменьшилась во много раз.

Поперечная чувствительность

Поперечная чувствительность характеризует способность датчика преобразовывать в электрический сигнал ускорение, направленное под углом 90° к оси чувствительности датчика (поперечное). У идеального акселерометра поперечная чувствительность равна нулю. В паспортных данных датчика указывается часть (в процентах) поперечного ускорения, которая проходит на выход.

Шум акселерометров

Шум, содержащийся в выходном сигнале акселерометра, определяет разрешающую способность устройства, важную при определении малых ускорений. Предельное разрешение в основном определяется уровнем шума измерения, который включает внешний фоновый шум и шум собственно датчика. Уровень шума непосредственно связан с шириной полосы пропускания датчика. Уменьшение полосы пропускания путем включения ФНЧ на выходе датчика приводит к снижению уровня шума. Это улучшает отношение сигнал/шум и увеличивает разрешающую способность, однако вносит амплитудные и фазовые частотные искажения. Некоторые модели акселерометров содержат на кристалле ФНЧ (семейство XMMA - 4-го порядка, ADXL190 - 2-го). Двухосные датчики ADXL202/210 имеют выводы для подключения двух внешних конденсаторов, образующих с двумя внутренними резисторами по 32 кОм два ФНЧ первого порядка.

Пример. Микросхема ADXL150 имеет типичное значение спектральной плотности шума 1мg/ Гц в полосе 10–1000 Гц. При включении ФНЧ с частотой среза 100 Гц действующее значение шума на выходе фильтра составит 10 мg, а амплитудное, с вероятностью 0,997, - в пределах 30 мg. Поскольку полная шкала этого датчика составляет 50 g, динамический диапазон равен 20lg(50/0,03) = 64,4 дБ. Это неплохо, но по этому показателю интегральные акселерометры сильно уступают пьезоэлектрическим. Например, пьезоэлектрический акселерометр типа 4371 компании Bruel & Kjaer имеет динамический диапазон 140 дБ .

Основной динамической характеристикой акселерометров является полоса пропускания по уровню –3 дБ. В табл. 2 приведены основные характеристики некоторых типов интегральных датчиков ускорения.

Литература

  • Гудинаф Ф. Интегральный акселерометр на 50 G с самоконтролем, реализованным на нагреваемом возбудителе // Электроника. 1993. № 7–8. С. 54–57.
  • Гудинаф Ф. Емкостный датчик ускорения, выполненный на основе сочетания объемной и поверхностной микроструктур // Электроника. 1993. № 11–12. С. 86–87.
  • Гудинаф Ф. Интегральный датчик ускорения для автомобильных надувных подушек безопасности // Электроника. 1991. № 16. С. 7–14.
  • Doscher J. Accelerometer Design and Applications. Analog Devices. 1998.
  • Серридж М., Лихт Т. Р. Справочник по пьезоэлектрическим акселерометрам и предусилителям. «Брюль и Къер». 1987.

В основе принципа действия любого акселерометра лежит свойство тел сохранять свое положение неизменным при ускоренном движении основания, на котором они каким-то образом закреплены.

Маятниковые акселерометры с электрической пружиной (рисунок 6) используются в системах стабилизации центра масс РН в позиционном и интегрирующем вариантах. Известно достаточно большое разнообразие конструктивных схем маятниковых акселерометров. Однако общим для них признаком является наличие механической системы, связанной с маятником, и электрической или фотооптической (а также электростатической, емкостной) системы съема полезной информации.

Компенсационный метод измерения, положенный в основу большинства маятниковых акселерометров, в принципе, обеспечивает высокую точность измерения. Реализация этого метода в акселерометрах осуществляется с помощью компенсирующих силовых или моментных устройств, основанных на различных физических принципах - механических, электромагнитных, электростатических.

Наибольшее распространение в настоящее время получили магнитоэлектрические преобразователи, в которых компенсирующие момент или сила создаются за счет взаимодействия магнитного поля, создаваемого током обратной связи, который протекает по обмотке преобразователя, с полем постоянного магнита. Подобные преобразователи обеспечивают получение необходимых моментов (сил) при малых габаритах и имеют приемлемую на данном этапе стабильность параметров.

Принцип действия маятникового акселерометра при разомкнутом ключе (интегрирующий вариант) заключается в следующем. При возникновении кажущегося ускорения W z , направленного по оси OZ, подвижная рамка с маятником, стремящимся сохранить свое положение неизменным, начнет разворачиваться относительно неподвижной рамки. В результате относительного вращения рамок магнитный поток подвижной рамки, пересекая витки обмотки неподвижной рамки, вызовет в ней электродвижущую силу. Напряжение, снимаемое с обмотки неподвижной рамки, после усиления в усилителе поступает через конденсатор и гибкие токопроводы на обмотку подвижной рамки и вызовет в ней ток обратной связи i ос. Этот ток, в свою очередь, вызовет магнитный поток
подвижной рамки. Взаимодействие магнитного потока постоянного магнита с осредненным значением магнитного потока от тока обратной связи явится причиной возникновения механического момента обратной связи M ос, направленного против момента инерционных сил M и.

Если допустить, что кажущееся ускорение W z постоянно, то в установившемся режиме наступит равенство между указанными моментами, т.е. M ос =M и, а мерой измеряемого ускорения может служить сила тока i ос в цепи обратной связи маятникового акселерометра, протекающего по обмотке подвижной рамки.



При разомкнутом ключе и полной идеализации всех звеньев цепи обратной связи можно считать, что

(1.1)

Так как М и =mlW x , то при М ос =М и получим

или после интегрирования при нулевых начальных условиях

(1.3)

Очевидно, что интеграл от кажущегося ускорения равен кажущейся скорости, т.е.

(1.4)

где t к – интервал интегрирования, поэтому

При замкнутом ключе и тех же исходных данных

Таким образом, один и тот же маятниковый акселерометр может быть при гибкой обратной связи интегрирующим, а при жесткой – позиционным. Это обстоятельство широко используется при начальной выставке систем управления летательных аппаратов и при управлении их движением в полете. Так, при разомкнутом ключе повышается точность начальной выставки комплекса командных приборов, поскольку при гибкой обратной связи исключаются статистические погрешности маятникового акселерометра с электрической пружиной, как простейшего контура системы автоматического регулирования.

В акселерометрах компенсационного типа для получения информации о величине ускорения используется датчик угла (ДУ). Наибольшее распространение как в навигационных, так и в промышленных образцах акселерометров получили фотодатчики (ФД) и датчики емкостного типа (ЕД).

Использование ФД позволяет для усиления полезного сигнала использовать относительно несложные электронные схемы. В типичном акселерометре компенсационного типа применен такой ДУ.

Основными элементами этого измерительного устройства являются:

Светодиод SD;

Два фотодиода VD1 и VD2;

Шторка, жестко закрепленная с маятником, и расположенная между свето- и фотодиодами;

Предварительный усилитель аналогового (линейного) сигнала DA, охваченный сопротивлением обратной связи Roc;

Сопротивление, преобразующее напряжение в ток обратной связи RI;

Обмотка датчика момента (ДМ) L.

Принцип действия данного маятникового акселерометра в аналоговом (штатном) режиме заключается в следующем. При возникновении кажущегося ускорения А вх, направленного вдоль оси чувствительности, маятник и жестко связанная с ним шторка, стремящаяся сохранить положение неизменным, начнет разворачиваться относительно корпуса акселерометра. В результате относительного вращения один из светодиодов будет засвечиваться больше, чем другой. Вследствие чего возникнет разность потенциалов на выходе ДУ. Это напряжение будет подано на вход предусилителя и после усиления в виде тока обратной связи поступит в обмотку ДМ. ДМ сформирует компенсирующий момент, который возвратит маятник в исходное состояние. Таким образом, по
величине тока обратной связи можно будет судить о значении кажущегося ускорения.

В момент начала движения маятника акселерометра на него действует сила трения покоя, которая вводит погрешность в измерения (порог чувствительности).

Принцип действия и устройство датчика измерения ускорения рассмотрим на примере пружинного акселерометра, в качестве чувствительного элемента которого применяется инерционная масса.

Принцип действия пружинного акселерометра с инерционным чувствительных элементов основан на использовании инерционных сил или моментов, возникающих при движении тела определенной массы с ускорением. Зависимость инерционной силы F, действующей на тело, масса которой равна m при наличии ускоренияa , как известно, определяют по второму закону Ньютона:

F = m ·a

Датчики с инерционными чувствительными элементами применяют также для измерения вибрации, угловой скорости вращения и т.д.

Устройство акселерометра.

Чувствительным элементом акселерометра служит инерционная масса 1, подвешенная на двух пружинах 2, прикрепленных в точках А и В к корпусу 3, жестко связанному с движущимся объектом.

Линия АВ является осью чувствительности акселерометра. Она параллельна той оси движущегося объекта, по которой нужно измерить ускорение х .

При отсутствии ускорений натяжение пружин одинаково и масса располагается в среднем (нейтральном) положении. Если объект движется с постоянным линейным ускорением х , то масса перемещается на некоторую величину, при которой инерционная сила Р ин, возникающая вследствие ускоренного движения массы в абсолютном пространстве, уравновешивается силой Р упр упругости пружин.

Для успокоения колебаний инерционной массы в переходном режиме служит демпфер 4, создающий силу, пропорциональную скорости перемещения массы относительно корпуса 3. Применяют магнитоиндукционные, жидкостные или воздушные демпферы.

Требования к акселерометрам в отношении точности измерения определяются областью применения. Так, погрешности акселерометров в инерциальных системах не должны превышать 0,001%. Акселерометры, используемые в системах управления, имеют погрешности на два-три порядка выше. Погрешности акселерометров, применяемых в качестве визуальных приборов, составляют 1÷3%.

Еще одной областью применения акселерометров является их применение в качестве датчиков измерения перегрузки, действующей на самолет в определенном направлении.

Перегрузкой называется отношение поверхностной силы F, действующей в направлении какой-либо оси самолета, к силе веса G. К поверхностным силам относятся подъемная сила, сила сопротивления и сила тяги. Различают перегрузку нормальную (поперечную), равную отношению подъемной силы к силе веса, продольную и боковую.

Перегрузка – величина безразмерная. Иногда говорят, что перегрузка равна, например, 5g. Это означает, что в данном направлении на летательный аппарат и находящихся в нем членов экипажа действует сила, в пять раз превышающая силу веса. Исходя из определения понятия перегрузки, следует говорить о перегрузке, равной 5, а не 5g.

Наибольшее значение для пилотирования ВС играет вертикальная перегрузка.

Сигналы акселерометров используются также в инерциальных навигационных системах для вычисления скоростей и координат, в системах управления полетом и двигателями, а также для индикации текущего и критического значений перегрузки.

Акселерометры, применяемые в системах управления, ориентируются своими осями чувствительности по главным осям лета тельного аппарата. Такие акселерометры измеряют составляющие вектора ускорения по этим осям, а для получения полного вектора необходимо иметь три акселерометра.

В инерциальных системах навигации оси чувствительности акселерометров ориентируются по осям навигационной системы координат, обычно связанной с Землей. В качестве навигационной системы координат может быть взята, например, географическая система, одна из осей которой направлена по меридиану, а вторая ось перпендикулярна к первой в горизонтальной плоскости. При этом два акселерометра с взаимно перпендикулярными осями, расположенными в горизонтальной плоскости, измеряют горизонтальные составляющие вектора ускорения, а один акселерометр, ось чувствительности которого направлена по вертикали, измеряет вертикальное ускорение.

Основными элементами акселерометров являются подвесы инерционных масс (чувствительных элементов), датчики сигналов перемещения массы, моментные (силовые) устройства, обеспечивающие ввод сигналов обратной связи, усилители сигналов и корректирующие устройства (демпферы).

Для того чтобы акселерометр реагировал только на ту составляющую ускорения, для измерения которой он предназначен, его инерционная масса должна иметь специальный подвес, удовлетворяющий следующим требованиям:

Минимальное трение в осях подвеса;

Отсутствие перекрестных связей между измерительными осями;

Обеспечение линейной зависимости между отклонениями инерционной массы и измеряемым ускорением.

Подвесы на простых опорах создают значительное трение, которое снижает чувствительность акселерометра. Для уменьшения трения чувствительный элемент укрепляют на рычаге или помещают в жидкость с удельным весом, равным удельному весу чувствительного элемента.

Перспективными являются электромагнитные и криогенные подвесы.

Для преобразования перемещений в электрические сигналы в акселерометрах применяются потенциометрические, индуктивные, емкостные, фотоэлектрические иструнные преобразователи .

Основные требования к преобразователям следующие:

1) большая разрешающая способность;

2) линейная зависимость выхода от входа;

3) отсутствие реакции преобразователя на чувствительный элемент.

Этим требованиям не удовлетворяют потенциометрические датчики, поэтому в точных приборах они не применяются.

В качестве моментных (силовых) устройств в акселерометрах для ввода сигналов обратных связей применяются моментные двигатели (электродвигатели, работающие в заторможенном режиме) и электромагнитные устройства.

Для получения акселерометров с требуемыми частотными характеристиками в цепях обратной связи применяют корректирующие фильтры и специальные демпферы. В приборах с жидкостным подвесом для демпфирования используется вязкость самой жидкости.

В качестве примера рассмотрим однокомпонентный акселерометр.

На схеме рис. 11.2 сейсмическая масса 1 подвешена на направляющей 4. Для уменьшения трения о направляющую масса 1, помещенная в жидкость 3, имеет нейтральную плавучесть, что исключает сильное прижатие к направляющей. Сигналы в рассматриваемой схеме, пропорциональные перемещению сейсмической массы, измеряются индуктивным датчиком 6 . После усиления в усилителе 5 сигнал поступает на электромагнитный (силовой) привод 7. Выходным сигналом акселерометра является падение напряжения и на сопротивлении R, включенном последовательно в цепь обмотки силового привода. Демпфирование в приборе получается за счет сопротивления при движении сейсмической массы в жидкости.

Объектом исследования является микроэлектромеханический (МЭМС) трехосевой акселерометр LSM303DLH в сочетании с трехосевым датчиком магнитного поля.

Целью работы является исследование погрешностей данного акселерометра, создание алгоритмического и программного обеспечения для определения статистических погрешностей датчика.

Предметом исследования являются методики и алгоритмы определения погрешностей МЭМС-акселерометра LSM303DLH.

Рисунок 1 - Трехосевой акселерометр LSM303DLH

Принцип работы сенсоров движения (акселерометров и гироскопов) основан на измерении смещения инерционной массы относительно корпуса и преобразовании его в пропорциональный электрический сигнал. Емкостной метод преобразования измеренного перемещения является наиболее точным и надежным, поэтому емкостные акселерометры получили широкое распространение. Структура емкостного акселерометра состоит из различных пластин, одни из которых являются стационарными, а другие свободно перемещаются внутри корпуса. Емкости включены в контур резонансного генератора. Под действием приложенных управляющих электрических сигналов подвешенная масса совершает колебания. Между пластинами образуется конденсатор, величина емкости которого зависит от расстояния между ними. Под влиянием силы ускорения емкость конденсатора меняется. На рисунке 2 показана топология МЭМС-сенсора.


Рисунок 2 - Топология МЭМС-акселерометра


Рисунок 3 - Виды ЧЭ акселерометров

Основным конструктивным узлом микроэлектромеханических акселерометров являются чувствительный элемент, принципиальные схемы которых приведены на рисунке 2. Чувствительный элемент (ЧЭ) включает в себя инерциальную массу (ИМ) - 1, упругие элементы подвеса - 2, опорную рамку - 3.


Рис. 4 - Принципиальная схема МЭМС-акселерометра: 1 - ИМ, 2 - неподвижные электроды, 3 - анкер, 4 - подвижные электроды, 5 - рамка, 6 - упругий элемент подвеса, 7 - основание (корпус)

Инерциальная масса (ИМ) смонтирована на некотором расстоянии от основания (корпуса) с помощью двух пар упругих элементов, подвеса и анкеров. ИМ перемещается в соответствии с измеряемым ускорением б. Емкостный измеритель перемещений образован гребенчатыми структурами электродов, из которых подвижные электроды образуют единую структуру с ИМ, а неподвижные, объединенные рамкой, скреплены основанием (корпусом).

Основными причинами, вызывающими погрешность измерений МЭМС-акселерометра являются температура, вибрация и перекрестное ускорение.

Изменение температуры окружающей среды приводит к изменению значения диэлектрической проницаемости е, зазора между пластиной маятника и крышками.

При действии перекрестного ускорения возникает дополнительная деформация упругих элементов подвеса и соответствующие им перемещение маятника. Перемещения маятника вдоль оси y совпадают с направлением оси чувствительности и компенсируется датчиком момента, т.е. ошибки не вносят. Перемещения маятника вдоль оси z относительно неподвижных электродов датчика перемещений изменяют эффективную площадь перекрытия электродов и без принятия конструктивных мер могут привести к случайной ошибке. Вероятность появления этой ошибки предотвращается увеличением площади электродов на крышках.

Важнейшими параметрами акселерометра являются диапазон измеряемых ускорений, чувствительность, выражаемая обычно как отношение сигнала в вольтах к ускорению, нелинейность в процентах от полной шкалы, шумы, температурные дрейфы нуля (смещения) и чувствительности. Благодаря этим качествам они нашли свое применение во множестве отраслей: военная и гражданская авиация; автомобилестроение; аэрокосмическое приборостроение; робототехника; военная промышленность; нефтяная и газовая промышленность; спорт; медицина. В ряде случаев существенной характеристикой оказывается собственная частота колебаний сенсора или резонансная частота, определяющая рабочую полосу частот датчика. В большинстве применений важны температурный диапазон и максимально допустимые перегрузки-характеристики, связанные с условиями эксплуатации датчиков. Определяющими параметрами, влияющими на точность определения ускорения, являются дрейфы нуля и чувствительности (в основном температурный), а также шумы датчика, ограничивающие порог разрешения устройства

Чувствительность датчика зависит от резонансной частоты механической подсистемы, а также качества электронного преобразователя. Изменение чувствительности с температурой связано в основном с изменением коэффициента упругости.

Температурный дрейф нуля обусловлен изменением коэффициента упругости, тепловым расширением и технологическими погрешностями изготовления сенсора. Изменение параметров электронной части датчика под действием температуры, как правило, существенно меньше. Поскольку акселерометр измеряет ускорение или силу, вызывающую ускорение инерционной массы, физическая модель акселерометра представляет собой инерционную массу, подвешенную на пружине, закрепленной в неподвижном корпусе, простую систему с одной степенью свободы x в направлении измерительной оси. Инерционная масса приобретает ускорение под действием ускоряющей силы (равнодействующей силы инерции при воздействии ускорения), пропорциональной массе m и ускорению a.

Спектральная плотность мощности (плотность шума, µg /vHz rms) в физике и обработке сигналов - функция, описывающая распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Часто термин применяется при описании спектральной мощности потоков электромагнитного излучения или других колебаний в сплошной среде, например, акустических. В этом случае подразумевается мощность на единицу частоты на единицу площади, например: Вт/Гц/м 2 .

Основные характеристики акселерометра LSM303DLH приведены в таблице 1.

Таблица 1 - Основные характеристики акселерометра LSM303DLH


Рисунок 5 - Блок-диаграмма акселерометра LSM303DLH


Рисунок 6 - Расположение пинов акселерометра LSM303DLH

Таблица 2 - Назначение пинов акселерометра LSM303DLH


Рисунок 7 - Структура системы обработки движения


Рисунок 8 - Структурная схема модуля LSM303DLH

Микроэлектромеханические (MEMS) датчики имеют малые массогабаритные характеристики, низкое энергопотребление и стоимость, обладают высокой устойчивостью к перегрузкам и ударам. Основным их недостатком является сравнительно низкая точность. Этот факт в первую очередь обусловлен принципиальным отсутствием на сегодняшний день адекватных и возможных для использования в течение длительных временных интервалов применения по назначению математических моделей погрешностей подобных датчиков.

Наиболее востребованное применение в MEMS-индустрии имеют микромеханические гироскопы и акселерометры. Основными их техническими характеристиками являются динамический диапазон, чувствительность, частотный отклик, характеристики шумовых составляющих. При калибровках микросхемы с достаточной степенью точности фиксируются на наклонно-поворотном столе, что позволят соответствующим образом ориентировать оси акселерометров относительно земной оси и, следовательно, определять их систематические погрешности. Также реализована возможность расчета коэффициентов влияния температуры и напряжения питания на основную систематическую погрешность, особенно характерных для подобных датчиков. Основой развития МЭМС является микроэлектронная технология, которая применяется практически во всех изделиях на основе кремния.

Использование МЭМС-технологий в современных электронных системах позволяет значительно увеличить их функциональность. Используя технологические процессы, почти не отличающиеся от производства кремниевых микросхем, разработчики МЭМС-устройств создают миниатюрные механические структуры, которые могут взаимодействовать с окружающей средой и выступать в роли датчиков, передающих воздействие в интегрированную с ними электронную схему. Именно датчики являются наиболее распространенным примером использования МЭМС-технологии: они используются в гироскопах, акселерометрах, измерителях давления и других устройствах. В настоящее время почти все современные автомобили используют рассмотренные выше МЭМС-акселерометры для активации воздушных подушек безопасности. Микроэлектромеханические датчики давления широко используются в автомобильной и авиационной промышленности. Гироскопы находят применение во множестве устройств, начиная со сложного навигационного оборудования космических аппаратов и заканчивая джойстиками для компьютерных игр. МЭМС-устройства с микроскопическими зеркалами используются для производства дисплеев и оптических коммутаторов.

С появлением микроэлектромеханических систем (МЭМС), инерциальные датчики получили существенное развитие. Такие преимущества как дешевизна, низкое энергопотребление, малые размеры, и возможность изготовления методом групповой технологии позволили инерциальным МЭМС сенсорам получить широкий диапазон применений в автомобильном, компьютерном, и навигационном рынках.

В отличие от традиционной технологии микроакселерометры протравливаются с использованием специализированных методик, комбинирующих механическую микрообработку поверхности поликристаллического кремния и технологии электронных схем.

Голяев Ю.Д., к.ф.-м.н., Колбас Ю.Ю., Коновалов С.Ф., д.т.н., профессор,

Соловьева Т.И., к.т.н., Томилин А.В.

(ОАО «НИИ «Полюс» им. М.Ф. Стельмаха; МГТУ им. Н.Э.Баумана;

МИЭМ НИУ ВШЭ)
Анализируются результаты исследований и сравнительных испытаний кремниевых и кварцевых акселерометров в инерциальном измерительном блоке. Рассматриваются достоинства и недостатки двух типов акселерометров, связанные с материалом маятника, и их влияние на точностные параметры, определяющие класс точности инерциальных измерительных блоков на их основе.
Investigations and comparative tests of the accelerometers in the inertial measurement unit. Golyaev Yu.D., Kolbas Yu.Yu., Konovalov S.F., Solovieva T.I., Tomilin A.V.

The results of investigations and comparative tests of Si-flex and Q-flex accelerometers in the inertial measurement unit are analyzed. The advantages and the problems of the above accelerometers connected with pendulum material are described and its influence on the accelerometers accuracy parameters as well as inertial measurement unit’s accuracy class are discussed.

Ключевые слова: кремниевый акселерометр, кварцевый акселерометр, инерциальный измерительный блок.

Key words: Si-flex accelerometer, Q-flex accelerometer, inertial measurement unit.


Введение
Наиболее перспективными для применения в системах, в которых требуется обеспечивать высокую точность при работе в большом диапазоне ускорений и в жестких условиях эксплуатации, являются компенсационные акселерометры с маятниками, изготовленными из кремния или кварца.

Они находят широкое применение в различных отраслях, начиная с навигационной техники для космической, ракетной , авиационной отраслей и заканчивая нетрадиционными применениями в строительстве, в системах мониторинга в инклинометрах для измерения профиля нефтяных и газовых скважин в процессе бурения.

Конструктивные схемы кремниевых и кварцевых акселерометров схожи (см. рис. 1,2). Основными элементами конструкции являются маятниковый узел, состоящий из установочной рамки, упругого подвеса и лопасти, емкостной датчик угла и магнитоэлектрический датчик момента, который обеспечивает компенсацию отклонения лопасти маятника под воздействием ускорения . Ключевую роль в различии характеристик двух типов акселерометров играет материал маятника. При этом следует иметь в виду главную особенность конструкционных материалов маятника. Она заключается в разности температурных коэффициентов расширения (ТКР) этих материалов. ТКР плавленого кварца практически равен ТКР материала магнитопровода магнитной системы акселерометра, выполненной из суперинвара 32НКД, в то время как ТКР кремния превышает его почти в 5 раз, что создает проблемы базирования кремниевых маятников на суперинваровых деталях. В то же время кремний имеет ряд очевидных технологических преимуществ перед кварцем, как в силу использования MEMS технологии, так и в силу дешевизны и доступности заготовок, в качестве которых используются стандартные кремниевые «вафли» электронной промышленности.


Рис. 1. Конструктивная схема

кварцевого акселерометра: 1 - лопасть маятника; 2 - упругая балочка подвеса маятника; 3, 8 - магнитная система; 4 - катушка датчика силы; 5 – кольцо маятникового узла с установочными платиками ; 6 - полюсный наконечник; 7 – постоянный магнит

Рис. 2. Конструктивная схема

кремниевого акселерометра: 1 – лопасть маятника; 2 – упругая балочка подвеса маятника; 3, 7 - магнитная система; 4, 8 – кварцевые кольца; 5 – катушка датчика силы; 6 – рамка маятникового узла с установочными платиками

Сравнительный анализ особенностей кремниевых и кварцевых акселерометров, обусловленных конструкционными материалами
Более детальное сравнение свойств кварца и кремния дает возможность отметить следующие особенности приборов, обусловленные различием материалов :

Модуль упругости кварца (107 ГПа) примерно в два раза меньше, чем у кремния (160 ГПа). Это позволяет при одинаковых прочностных свойствах упругого подвеса маятника иметь в два раза меньшую жесткость кварцевого подвеса по сравнению с кремниевым подвесом и по этой причине в два раза снизить требования в кварцевых приборах к величине временного и температурного дрейфа нуля усилителя компенсационного контура;

– теплопроводность кремния (157 Вт/(o C·м)) многократно превышает теплопроводность кварца (1,38 Вт/(o C·м)). По этой причине можно ожидать меньший перегрев лопасти и катушек у кремниевых маятников ;

– кварц имеет ТКР = 0,55·10 -6 1/ o С против ТКР = 2,6·10 -6 1/ o С у кремния. По этой причине детали из кварца имеют значительно меньшее изменение размеров при изменении температуры по сравнению с деталями из кремния;

– ТКР кварца (0,55·10 -6 1/ o С) идеально сочетается с ТКР магнитопроводов из суперинвара 32НКД, равным 0,56·10 -6 1/ o С. Поэтому в акселерометрах с кварцевым маятником существенно проще решается проблема фиксации маятника и, следовательно, легче может быть обеспечена существенно более высокая стабильность смещения нуля;

– кремний также может хорошо сочетаться по ТКР с рядом инвароподобных сплавов, однако у выпускаемых промышленностью материалов, например 39Н, имеется паспортное значение ТКР, близкое к кремнию. Но разброс ТКР при допустимой разнице содержания никеля в сплаве 39Н от 38 % до 40 % даёт разброс ТКР от 2·10 -6 до 4·10 -6 1/ o С. Это приводит к существенным проблемам при базировании маятника и к связанной с этим проблеме нестабильности смещения нуля. Приемлемой для кремния парой является пирекс, но использование промежуточных слоев при соединении маятника с инваровыми деталями магнитопроводов приводит к усложнению конструкции акселерометра;

– кварц является изолятором, следовательно, его нельзя использовать без напыления электродов, применяемых в качестве подвижных электродов емкостного датчика угла и токоподводов к ним. Кремний обладает достаточной электропроводностью для использования его в качестве подвижного электрода емкостного датчика угла без дополнительного напыления электродов и токоподводов;

– маятник из монокристаллического кремния может изготавливаться методами, хорошо освоенными электронной промышленностью , и из стандартных заготовок. Обычно для кремния, легированного фосфором, применяется метод фотолитографии и жидкостного анизотропного травления в 33 %-ном водном растворе КОН при температуре от 100 о C до 107 о C. Иногда используется ионно-плазменное травление. Важно отметить, что процесс жидкого травления идет анизотропно, что позволяет обеспечить однозначное и точное соответствие используемых при фотолитографии шаблонов и формы изготавливаемых маятников. Анизотропное травление позволяет получить сложные формы упругого подвеса лопасти маятника (плоские балочки, крестовидные и Х-образные растяжки). Защитной пленкой при выполнении травления является слой окиси кремния, выращенный в окислительной среде (влажного кислорода) при температуре ~ 1100 … 1200 о C. Кремниевые заготовки - «вафли», используемые при изготовлении маятников, массово выпускаются предприятиями электронной промышленности и дешевы. Легко реализуется групповое изготовление маятников. Кварцевые маятники до последнего времени изготавливались индивидуально из специальных заготовок и потому были дороги. Появившиеся в настоящее время «вафли» из плавленого кварца допускают переход к групповой технологии. Но здесь технологический процесс существенно затруднен из-за необходимости многократного нанесения защитных пленок золота с хромовым подслоем (толщиной до 8 микрон) и проведения многократных фотолитографий. Иначе не удается получить требуемую форму упругой перемычки – процесс травления кварца в плавиковой кислоте идёт изотропно. Достигнутая форма упругого подвеса – плоская упругая балочка.

Таким образом, на сегодняшний день кремний является более технологичным материалом и позволяет получить более дешевую продукцию. Вместе с тем кремний уступает плавленому кварцу по возможности обеспечивать более высокие точностные характеристики приборов.

Из изложенного видно, что отдать приоритет одному или другому типу акселерометров для применения в конкретной системе не представляется возможным без проведения сравнительных испытаний приборов на основе как кремния, так и кварца.


Выбор акселерометров для проведения сравнительных испытаний
Целью настоящих исследований явился выбор акселерометра, наиболее соответствующего требованиям по акселерометрическому тракту для инерциального измерительного блока (ИИБ).

Исходя из специфики применения ИИБ, требующей обеспечения малого времени готовности после подачи питания (как следствие – отсутствие термостата) в условиях широкого диапазона ускорений и температур, для ИИБ были выбраны маятниковые газонаполненные приборы. К ним относятся кварцевые акселерометры типа QA-2000, QA-3000, A-18, BA-3, АК-6, а также вновь разработанные АК-15, A-18Т и ААК-02.

Поскольку в изделии ИИБ невозможна калибровка по каналам акселерометров перед началом использования, важнейшую роль приобретает невоспроизводимость параметров акселерометров, а именно масштабного коэффициента , смещения нуля и двух углов, определяющих положение базовой плоскости. Ошибки тем более возрастают после воздействия предельных повышенных и пониженных температур, поскольку при этом складываются температурные гистерезисы параметров с кратковременными и долговременными нестабильностями.

Именно поэтому для первичной оценки пригодности акселерометров к применению в ИИБ были избраны невоспроизводимость вышеуказанных параметров после воздействия предельных как повышенных, так и пониженных температур.

Подробное исследование различных типов акселерометров приводится далее.
Анализ акселерометров для применения в ИИБ
В настоящее время имеются как серийно выпускаемые, так и вновь освоенные в производстве акселерометры, близкие по параметрам требованиям для акселерометров в ИИБ: невоспроизводимость масштабного коэффициента 9·10 -5 отн.ед., невоспроизводимость смещения нуля 8·10 -5 g, изменение углов ориентации базовой плоскости 40" . Характеристики акселерометров по ТУ или рекламным проспектам приведены в таблице 1.

Таблица 1


Наименование параметра

Ед. измер.

Требования

к акселеро-метрам


А-18

АК-15

ВА-3

А-18Т

АК-6

Е1

Невоспроизводи-мость масштабного коэффициента

Отн.

9·10 -5

15·10 -5

20·10 -5

24·10 -5

10·10 -5

8·10 -5

5·10 -5

Невоспроизводи-мость смещения

g

8·10 -5

20·10 -5

3·10 -5

16·10 -5

10·10 -5

6·10 -5

8·10 -5



"

40

30

4

20

20

10

20

Диапазон измеряемых ускорений

g

40

40

20

50

40

20

50

Диапазон рабочих температур

о С

-50…+85

-60…

-60…

-55…

-50…

-60…

-55…

Материал маятника

кремний

кварц

кварц

кремний

кварц

кварц

Производитель

ИТТ

МИЭА

Электро-оптика

ИТТ

Серп.завод

Металлист



Китай

Цена

тыс. руб.

190

210

250

250

220

130

Предварительные проверки акселерометров, представленных в таблице, показали, что их параметры не всегда соответствуют рекламируемым. Поэтому потребовалась разработка специальной методики для проведения их тщательного анализа в температурном диапазоне. Этой методикой предусматривается измерение невоспроизводимости параметров с высокой точностью в связи с тем, что данная характеристика не подлежит алгоритмической коррекции и окажет решающее влияние на точность канала акселерометров ИИБ.

Методика испытаний акселерометров
При проведении испытаний на невоспроизводимость параметров была использована следующая методика, состоящая из 5 этапов.

Акселерометры закреплялись на делительной головке в камере тепла и холода. В камере устанавливалась температура +251 о С, и акселерометры выдерживались при этой температуре 2 часа. Затем акселерометры включались. Через 1,5 часа работы производилось измерение масштабного коэффициента, смещения нуля и углов отклонения базовой плоскости акселерометров. При этом по встроенному термодатчику контролировалась температура акселерометров. Погрешности измерения при этом составляли: по масштабному коэффициенту 0,5·10 -5 отн. ед., по смещению нуля 1·10 -5 g, по углам отклонения базовой плоскости 10" , по температуре 0,2 о С.

Затем акселерометры выключались, а в камере устанавливалась температура –501 о С, и акселерометры выдерживались при этой температуре 2 часа. После этого акселерометры включались на 1,5 ч при этой температуре, и производилось измерение значения масштабного коэффициента, смещения нуля и углов отклонения базовой плоскости.

Затем описанная процедура повторялась при температурах +251 о С, +751 о С, +251 о С с измерением масштабного коэффициента, смещения нуля и углов отклонения базовой плоскости акселерометров и контролем по встроенному термодатчику температуры акселерометров.

По пяти полученным для каждого акселерометра значениям рассчитывались температурная зависимость масштабного коэффициента, смещения нуля и углов отклонения базовой плоскости (полином второго порядка). Для трех значений при +251 о С рассчитывалась невоспроизводимость этих параметров, равная максимальному отклонению от температурной зависимости. Такая методика позволяет учесть все температурные погрешности до третьего порядка малости и обеспечить необходимую точность измерения в камере тепла и холода, имеющей погрешность установки температуры 1 о С.

Результаты испытаний конкретных акселерометров приведены в таблице 2. По каждому параметру указаны диапазоны значений , полученных для нескольких образцов акселерометров, которые одновременно участвовали в испытаниях.


Таблица 2

Характеристики акселерометров по результатам испытаний


Наименование параметра

Ед. измер.

А-18

АК-15

А-18Т

АК-6

Е1

Невоспроизводимость масштабного коэффициента

Отн.ед.

(10–15) ·

(16–18) ·

(3–5) ·

(3–7) ·

(1–24) ·

Невоспроизводимость смещения нуля

g

(15–19) ·

(1– 3) ·

(15–28) ·

(4–8) ·

(4–6) ·

Изменение углов ориентации базовой плоскости

"

20–32)

21–24)

9–13)

3–6)

10–12)

Заключение
Из всех представленных на испытания приборов ни один из акселерометров не соответствует полностью требованиям, предъявляемым к каналу акселерометров ИИБ, однако в разной степени.

Акселерометр АК-6 соответствует требованиям для ИИБ, за исключением диапазона измеряемых ускорений.

Акселерометр А-18 не соответствует требованиям для ИИБ по параметрам невоспроизводимости масштабного коэффициента, невоспроизводимости смещения нуля, изменению углов ориентации базовой плоскости.

Акселерометр АК-15 не соответствует требованиям для ИИБ по параметрам невоспроизводимости масштабного коэффициента и диапазону измеряемых ускорений.

Акселерометр Е1 не соответствует требованиям для прибора ИИБ по параметру невоспроизводимости масштабного коэффициента (пять приборов из шести). В то же время небольшая часть приборов E1 показывает исключительно высокие точностные характеристики, что свидетельствует, с одной стороны, об удачной конструкции , являющейся копией американского кварцевого акселерометра QA-3000, а с другой – о неотработанности технологии производства этих акселерометров.

Макет акселерометра А-18Т не соответствует требованиям для прибора ИИБ по параметру невоспроизводимости смещения нуля.

Необходимо отметить, что все испытанные акселерометры, кроме АК-6, А-18 и АК-15 реально не соответствуют указанным в рекламных проспектах и ТУ параметрам.

Выводы
Все акселерометры с маятником из кремния не соответствуют требованиям по параметру невоспроизводимости смещения нуля. Это, по-видимому, является недостатком, принципиально присущим акселерометрам с конструктивной схемой, используемой в А-18.

В то же время все акселерометры с маятником из кварца соответствуют требованиям по параметрам невоспроизводимости смещения нуля и изменения углов ориентации базовой плоскости, а остальные параметры весьма близки к требуемым.

Соответствие требованию по параметрам невоспроизводимости масштабного коэффициента и диапазону измеряемых ускорений для приборов с маятником из кварца определяется искусством конструктора и является вполне достижимым, особенно при использовании современных магнитов с малым температурным гистерезисом.

Организация группового изготовления кварцевых маятников из серийно выпускаемых кварцевых заготовок (вафель) большого диаметра при минимуме ручных операций с использованием MEMS технологий позволит устранить недостаток кварца по сравнению с кремнием – невозможность использования групповых технологий и существенно уменьшит стоимость кварцевых акселерометров по сравнению со сложившимися на российском рынке ценами. При этом отсутствие операций механической обработки маятников будет способствовать увеличению точности приборов.

Поскольку наиболее приближен по точностным параметрам к требованиям ИИБ именно АК-6, следует взять именно его конструкцию за основу для доработки акселерометра под требования ИИБ с рекомендацией внедрения при производстве новейших групповых технологий, обеспечивающих повышение производительности и снижение стоимости. Увеличение диапазона измерений АК-6 достигается без внесения конструктивных изменений. Для уменьшения времени прогрева и повышения стабильности смещения нуля следует вынести за пределы корпуса собственно акселерометра основные тепловыделяющие элементы, прежде всего электронику усилителя обратной связи. Проведение этих очевидных доработок позволит производить серийные отечественные акселерометры типа АК-6, полностью обеспечивающие требования к акселерометрическому тракту ИИБ.

Список литературы


  1. Коновалов С. Ф., Полынков А. В., Сео Дж. Б. и др. Опыт разработки малошумящего акселерометра // Гироскопия и навигация, 2000, №3(30), С. 68-77. ISSN 0869-7035.

  2. Коновалов С. Ф., Коновченко А. А., Межирицкий Е. Л. Компенсационный Si-flex акселерометр для измерения больших ускорений // Гироскопия и навигация. – 2006. - №2. – С. 44-51. ISSN 0869-7035.

  3. Peters R. B., Stoddard D. R., Meredith K. Development of a 125 g Quartz Flexure Accelerometer for the RIMU Program // AlliedSignal Electronic and Avionics Systems. Communication and Sensor Systems. IEEE. – 1998. –N1. – P. 17-24.

  4. Коновалов С. Ф., Полынков А. В., Сео Дж. Б. и др. Опыт разработки малошумящего акселерометра // Докл. VII Санкт-Петербургская международная конференция по интегрированным навигационным системам. - Санкт-Петербург, 2000. – С. 72-79.

  5. Пат. 2155964 С1 (РФ), МКИ7 G 01 P 15/13. Компенсационный маятниковый акселерометр / В. М. Прокофьев, С. Ф. Коновалов, Дже-Бом Сео и др.; Коновалов Сергей Феодосьевич. - №99113694/28; Заяв. 23.06.1999. // Открыт. Изобретения…. – 2000. - №25.

  6. Pat. 6422076 B1 (USA), Int. Cl.7 G 01 P 15/08. Compensation pendulous accelerometer / V. M. Prokofiev, S. F. Konovalov, Jae-Beom Seo et al ; Agency For Defense Development, Taejon (KR); Sergei Feodosievich Konovalov, Moscow (RU). – No 09/598386; Jul. 23. 2002.

  7. Pat. 0336151 (Korea), Int. Cl. G 01 P 15/08. Compensation pendulous accelerometer // V. M. Prokofiev, S. F. Konovalov, Jae-Beom Seo et al; Konovalov Sergei Feodosievich. – Apr. 24.2002.

  8. Konovalov S. F., Polynkov A. V., Seo J. B. et al. Research of operability of accelerometers at high-G linear acceleration, vibrating and shock effects without using test centrifuges, vibration and shock test tables. // Paper. XIV Saint Petersburg international conference on integrated navigation systems. – Saint Petersburg, 2007. – P. 125-132.

  9. Коновалов С. Ф., Seo J. B. Причины неравномерного распределения магнитной индукции в зазорах компенсационных датчиков акселерометров типа Q-flex // Гироскопия и навигация. – 2009. – №2. – С. 72-79. ISSN 0869-7035.

  10. Коновалов С. Ф., Seo J. B. Распределение магнитного поля в кольцевом зазоре моментного датчика акселерометра типа Q-flex. // Тезисы доклада XXVI конференция памяти Н. Н. Острякова. Гироскопия и навигация. – 2008. – №4. – С. 67. ISSN 0869-7035.

  11. Сео Дже Бом. Оптимизация параметров и моделирование рабочих режимов в
компенсационных акселерометрах типа Q-flex и Si-flex. Диссертация на соискание ученой степени кандидата технических наук. – Москва, 2012 г.
 
Статьи по теме:
Погреб на даче своими руками (56 фото): материалы, этапы
Живя в частном доме, мы постоянно сталкиваемся с вопросом, куда можно сложить картошку, капусту, соленья-варенья и другие заготовки на зиму. Сараи и хозпостройки на участке хороши до первых морозов, но лучшим местом для хранения продуктов является погреб.
Как сделать крыльцо из блоков своими руками Выложить крыльцо из кирпича руками
Практически каждый частный дом перед входной дверью имеет площадку с небольшим навесом и ступенями, называемую крыльцом. Это архитектурное сооружение защищает от непогоды, облегчает доступ к входной двери и служит украшением жилища. Оно может быть изготов
Грамотная кладка кирпича Как класть стенку из кирпича
Это трудоемкий и сложный процесс, от которого полностью зависит прочность всей конструкции. Если нарушить технологию, то в самостоятельно отстроенном сооружении могут появиться трещины или же оно вовсе рухнет. Также важно соблюдать точность и аккуратность
Кофемолка ручная жерновая: керамические и конические жернова Кофемолка жерновая ручная какая лучше
Для прочтения требуется ~3 минутыКофемолка жерновая - необходимый атрибут для настоящих гурманов. Процесс приготовления кофе для ценителей напитка превратился в настоящий ритуал, и главной его составляющей является свежий помол. Зерновой кофе дешевле моло