Ксв метр 1 30 мгц схемы. Самодельный VHF - UHF КСВ - метр

Известно, что успешная работа в эфире во многом зависит от эффективности антенны любительской радиостанции. Существует большое разнообразие коротковолновых антенн. Начинающие радиолюбители обычно используют наиболее простые, не требующие больших затрат. Более опытные устанавливают на высоких мачтах многоэлементные направленные антенны с дистанционным управлением положением главного лепестка диаграммы направленности. Но любая антенна будет давать хорошие результаты, лишь когда правильно настроена. Существенную помощь радиолюбителю в настройке антенны окажет предлагаемый прибор.

Антенну, как правило, запитывают тремя способами. На наиболее простые, например «длинный луч», питаются однопроводным фидером, являющимся частью антенны и поэтому интенсивно излучающим электромагнитные волны. При работе радиостанции на передачу такой фидер является источником помех для ближайших телевизоров. При приеме на него также наводится множество бытовых и индустриальных помех.

Некоторые антенны запитывают двухпроводным воздушным фидером или симметричным ленточным кабелем. Такой способ позволяет уменьшить излучение фидера, но широкого распространения у радиолюбителей не получил из-за необходимости использовать симметричные выходные цепи передатчика, относительно сложную воздушную двухпроводную фидерную линию или дефицитный ленточный кабель.

Наибольшее распространение получил коаксиальный фидер. При правильном согласовании и симметрировании он практически не излучает при передаче и помехозащитен при приеме. К тому же обычный телевизионный коаксиальный кабель доступен любому радиолюбителю. Описываемый ниже прибор предназначен для измерения коэффициента стоячей волны (КСВ) и мощности, передаваемой по коаксиальному кабелю в антенну. Известно, что коаксиальная линия передачи характеризуется «так называемым волновым сопротивлением q, которое в основном зависит от соотношения размеров внутреннего (у кабеля - жила) и внешнего (оплетка) проводников. Наиболее часто встречаются кабели с волновым сопротивлением 50 и 75 Ом. Для того чтобы мощность, подаваемая от передатчика в кабель (рис. 2.6,а), поступала в нагрузку (антенну), необходимо выполнить условие: сопротивление нагрузки должно быть равно волновому сопротивлению кабеля. В этом случае, если не принимать во внимание потери в кабеле, по всей длине между центральным проводником и оплеткой установится одинаковое напряжение и по ним потечет одинаковой силы ток (рис. 2.6,6). Конкретные значения этих величин зависят от мощности передатчика, параметров нагрузки и кабеля. Принято говорить, что при этом в кабеле устанавливается режим бегущей волны.

Но на практике чаще бывает так, что сопротивление нагрузки не равно волновому сопротивлению кабеля, т. е. между ними существует рассогласование. В этом случае в нагрузке выделяется только часть мощности (падающая волна), а появляющаяся так называемая реактивная мощность движется от нагрузки к передатчику (отраженная волна). Составляющие электромагнитного поля отраженной волны имеют начальную фазу, отличную от начальной фазы составляющих падающей волны. В результате сложения одноименных составляющих с разными фазами в кабеле образуются стоячие волны . Уровень стоячих волн можно оценить коэффициентом стоячей волны - частным от деления суммы на разность напряжений или токов в кабеле, вызванных падающей и отраженной волнами.

Рассмотрим два крайних случая рассогласования: обрыв нагрузки (RH=oo) и короткое замыкание (RH=0). В первом случае (рис. 2.6,в) напряжение на конце кабеля максимально и больше, чем в случае согласованной нагрузки (R„= 0), а ток в этой точке равен нулю. По мере удаления от конца кабеля к передатчику напряжение уменьшается, а ток возрастает. На расстоянии четверти длины волны в кабеле напряжение упадет до нуля, а ток достигнет максимума. В таком случае говорят, что в этой точке располагается узел напряжения и пучность тока.

Рис. 2.6. Распределение тока I и напряжения U вдоль линии передачи высокочастотной энергии

Попутно следует заметить, что длина волны в кабеле λн связана с длиной волны в свободном пространстве λ следующим соотношением:

В этой формуле ε - это диэлектрическая постоянная (проницаемость) материала внутренней изоляции кабеля. Выражение К = 1 / ε называется коэффициентом укорочения волны в кабеле. Например, для кабелей с диэлектриком из полиэтилена К = 0,66 и λк = 0,66 λ.

Если продолжать двигаться от конца кабеля в сторону передатчика, то еще через λк/4 картина соотношения напряжения и тока будет такой же, как и на конце кабеля, т. е. узел тока и пучность напряжения.

При коротком замыкании в нагрузке (рис. 2.6,г) картина стоячих волн несколько иная - на конце кабеля ток максимален, а напряжение равно нулю.

Обычно обрыв или короткое замыкание нагрузки бывает при неисправности антенны и случается не так часто. При неравенстве сопротивления нагрузки и волнового сопротивления кабеля вдоль линии также образуются стоячие волны и только часть мощности отражается от нагрузки (рис. 2.6, д, е).

Фидер антенны может работать как в режиме бегущих, так т в режиме стоячих волн. В первом случае его длина может быть произвольной и определяться удаленностью антенны от передатчика. Во втором случае длина фидера должна быть связана с длиной волны в кабеле Кл. Так, если она кратна целому числу полуволн, то сопротивление нагрузки трансформируется К началу кабеля без изменения. Элементами настройки выходного контура передатчика может быть достигнуто согласование его выходного сопротивления и нагрузки.

Принципиальная схема прибора для измерения КСВ изображена на рис. 2.7. К одному из коаксиальных разъемов XS1 или $S2 отрезком кабеля подключается передатчик, а к другому - .фидер антенны. К каждому из диодов VD1 и VD2 приложено два напряжения: одно, пропорциональное напряжению между проводниками коаксиального кабеля, поступает с емкостного делителя С1С2 и С3С4. Второе напряжение выделяется на резисторах R1 и R2 - оно пропорционально току в центральном проводнике.

Напряжения, снимаемые с емкостных делителей, практически синфазны, так как расстояние между точками подключения С1 и С3 невелико по сравнению с λк и набегом фазы на этом участке можно пренебречь. В то же время напряжения, снимаемые с резисторов, противофазны. Поэтому на одном диоде результирующее напряжение будет равно сумме двух напряжений, а на другом - разности. На каком какое - это зависит от взаимного направления намотки обмоток трансформатора тока Т1

Ток того диода, к которому приложено суммарное напряжение, пропорционален падающей волне, а ток другого - отраженной. КСВ вычисляют по формуле КСВ = (Iпад + Iотр)/(Iпад- I отр), где Iпад и Iотр - ток диода для падающей и отраженной волны.

Рис. 2.7. Принципиальная схема измерителя КСВ и малой мощности

Для удобства вычислений стрелку индикатора РА1 при положении переключателя SA1, соответствующем падающей волне, устанавливают переменным резистором R4 на последнее деление шкалы. Затем переключатель переводят в положение отраженной волны и отсчитывают показания индикатора.

Если шкала индикатора содержит 100 делений (например, у микроамперметра с током полного отклонения стрелки 100 мкА), формула принимает вид:

В этом случае для вычислений удобнее пользоваться табл. 2.2 в которой указано, какому значению КСВ соответствует то или иное отклонение стрелки индикатора

Когда переключатель SA2 устанавливают в положение «W», прибор с приемлемой погрешностью измеряет, мощность, проходящую по фидеру. Причем чем КСВ лучше (ближе к 1), тем выше достоверность измерения.

Теперь несколько слов о конструкции прибора и примененньх деталях. Диоды желательно использовать германиевые, поскольку они начинают открываться при меньшем приложенном напряжении по сравнению с кремниевыми. Кроме указанных на схеме, подойдут ГД507 или даже Д9. Подстроечиые конденсаторы С1 и С3 - типа КТ4-23 или КПК-МП, остальные - К10-7В или КМ Резисторы Rl - R3 типа МЛТ-0,25, причем R1 и R2 желательно подобрать одинаковыми по сопротивлению. Переменный резистор R4 может быть типа СПЗ-30, СПЗ-12, СПЗ-4аМ. Трансформатор тока Т1 выполнен на кольцевом сердечнике типоразмера К7Х4Х2 из феррита М50ВН-14. Обмотка I содержит 2 витка провода ПЭВ 2 0,51, обмотка II -48 витков провода ПЭЛШО 0,15. Дроссели L1 и L2 - типа ДПМ-0,1, но их можно заменить и самодельными. Для этого на кольца из феррита М1000НН типоразмера К7X4X2 следует намотать 45 витков провода ПЭЛШО 0,15.

Печатную плату (рис. 2.8) изготавливают из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Ее укрепляют внутри корпуса размерами 60X80X60 мм, который выполнен из листового алюминия или латуни. На передней стенке корпуса установлены тумблеры МТ-1 и микроамперметр. Он может быть любого подходящего типа с током полного отклонения рамки до 500 мкА. Коаксиальные разъемы СР-50-73Ф укрепляют на боковых стенках корпуса. Без ущерба качеству работы прибора эти разъемы можно заменить телевизионными антенными гнездами САТ-Г.

Puc. 2.8. Печатная плата измерителя КСВ (а) и расположение деталей на плате (б)

Для налаживания прибора вместо антенны к разъему XS2 подключают резистор 50 или 75 Ом. Его номинал зависит от волнового сопротивления используемого коаксиального кабеля в фидере антенны. Для передатчика мощностью до 10 Вт это могут быть несколько резисторов МЛТ-2, включенные параллельно. Лучше в качестве нагрузки применить уже известный читателю поглощающий измеритель мощности.

Передатчик мощностью не более 10 Вт подключают к разъему XS1. Переключатель SA1 устанавливают в положение отраженной волны. Подстройкой емкости конденсатора С1 изменяют коэффициент деления емкостного делителя С1С2 так, чтобы амплитуды напряжений на конденсаторе С2 и резисторе R1 уравнялись. Поскольку эти напряжения по отношению к диоду VD1 включены встречно, то ток через диод должен быть равен нулю. Если все же, подстраивая С1, не удается установить стрелку индикатора на нулевое деление шкалы, то следует поменять местами выводы обмотки II трансформатора Т1. Затем подключают к XS1 нагрузку, а к XS2- передатчик. Изменяют положение переключателя SA1 и, подстраивая СЗ, стрелку вновь устанавливают на нулевое деление.

Калибровку шкалы мощности осуществляют подбором резистора R3. При этом мощность, выделяющаяся в нагрузке, должна быть равна 10 Вт. Для контроля вместо поглощающего измерителя мощности можно также использовать и высокочастотный вольтметр, например типа ВК7-9, подключенный параллельно нагрузке. Значению мощности 10 Вт соответствует напряжение 22,4 В для нагрузки 50 Ом и 27,4 В - для 75 Ом. Подбором резистора R3 стрелку индикатора устанавливают на последнее деление шкалы. Уменьшая мощность, шкалу градуируют через 1 Вт. Для этой цели можно использовать данные, приведенные в табл. 2.1 и в прил. 3.

По окончании налаживания и градуировки следует обратить внимание на соответствие стрелок, нанесенных на панели у тумблера SA1, направлению падающей волны. Если тумблер установлен в положение стрелки, указывающей направо, то прибор должен регистрировать падающую волну при подключении передатчика слева, а нагрузки - справа. В случае необходимости восстановить это соответствие можно, поменяв местами провода, подпаянные к неподвижным контактам тумблера.

Как видно, описанный прибор применим лишь совместно с маломощным (до 10 Вт) передатчиком. Благодаря этому он реагирует на сравнительно малые уровни мощности и может быть использован не только для контроля качества антенно-фидерного тракта радиостанции. Прибор можно применять для оценки качества согласования между возбудителем и линейным усилителем мощности. Это очень важно, поскольку при плохом межкаскадном согласовании сопротивлений увеличивается уровень нелинейных искажений в выходном сигнале, расширяется полоса излучаемых частот, возрастает интенсивность помех радиовещательному и телевизионному приему.

Рис. 2.9. Принципиальная схема второго варианта измерителя КСВ и проходящей мощности (до 1000 Вт)

На радиостанциях второй и первой категории, особенно коллективных, весьма желательно иметь измеритель КСВ, постоянно включенный в разрыв фидера. Это даст возможность своевременно обнаруживать повреждение в антенне или ошибочное включение антенны другого диапазона.

Принципиальная схема такого варианта измерителя КСВ и проходящей мощности изображена на рис. 2.9. Как видно, он отличается от предыдущего тем, что пределов измерения мощности не один, а два - 100 и 1000 Вт. Высокочастотная часть измерителя такая же. Выбор рода работы осуществляется переключателем. SA1 на три положения и три направления. Резисторы R3 и R5 служат для калибровки на пределе 100 Вт, a R4 и R6 - на пределе 1000 Вт. Калибровку и градуировку шкал удобнее всего производить с помощью поглощающего измерителя мощности.

В конструкции применен трансформатор тока, выполненный На кольцевом сердечнике типоразмера К12Х6Х4,5 из феррита Марки М50ВН-14. Первичная обмотка представляет собой отрезок Центрального проводника коаксиального кабеля длиной 15 мм, Который вместе с изоляцией продет сквозь кольцо. Предварительно по окружности кольца равномерно в один слой намотана Вторичная обмотка - 30 витков провода ПЭВ-2 0,25. Концы первичной обмотки запаяны на печатные проводники шириной "0 мм на плате, которая связывает коаксиальные разъемы XS1 и XS2.

Конденсаторы С1 и СЗ могут быть типа КПК, КПВМ, КТ2-19. Диоды могут быть как германиевые, так и кремниевые, например КД522А.

Налаживание этого измерителя КСВ по сравнению с первым вариантом особенностей не имеет. Отличие заключается лишь в уровнях мощности, с которыми придется работать. Следует соблюдать осторожность и во избежание ожога токами высокой частоты не прикасаться к токонесущим проводникам прибора.

В заключение необходимо напомнить, что при приближении грозы антенну от радиостанции следует отключать и заземлять. Были случаи, когда из-за наводок, вызванных близкими грозовыми разрядами, выходили из строя диоды в измерителе КСВ.

КСВ метр от RV4HV

Данное схемное решение скопировано с промышленного КСВ метра ROGER RSM-200 имеющего следующие хар-ки:

  • Полоса частот от 1.6 мГц до 200мГц
  • Проходная мощность не более 200 ватт

Принципиальная схема:

Прибор не реверсивный, поэтому надо соблюдать правильность включения входа и выхода. Трансформаторы L1 L2 намотаны на ферритовых кольцах типоразмер 12x7x6 мм проводом пэв-0.4мм 22 витка, мотается равномерно по всей окружности кольца. Затем в оба намотанных кольца вставляется латунная трубка диаметром 3,5мм и длинной 40 мм (я использовал элемент антенны от карманных приёмников) и распаивается на разъемах PL. Образец приведён на фотографии.

Дроссели L3 L4 мотаются на аналогичных кольцах и имеют по 19 витков ПЭВ 0.4мм. Обратите внимание, что через отверстия колец L3 L4 в кембрике пропущены перемычки, которые соединяют диоды и дроссели L1 L2 (как показано на схеме и видно на фото). Печатная плата двухсторонняя, на стороне показанной на фото, расположены два пятачка для пропайки разъемов PL. На второй стороне расположены остальные элементы схемы:

Выводы элементов должны быть предельно короткие.

Печатная плата выполнена утюжно-лазерной технологией её размеры 60мм Х 33мм. Плата помещается в жестяной экран 60 Х 33 Х 33мм

Получившийся блок располагают в любом удобном корпусе из алюминия или текстолита с измерительной головкой и переключателями. Все переменные и подстроечные резисторы располагаются на отдельной плате около изм. головки. Настройка КСВ метра сводится к калибровке обратной волны резистором R3. Калибровка мощметра производится резисторами R4, R5 в поддиапазоне 200 и 20 ватт.

АНТЕННОСКОП ДЛЯ ДИАПАЗОНА 144 МГц

Этот прибор предназначен для измерения входного сопротивления антенн двухметрового диапазона в пределах от 20 до 150 Ом. Антенноскоп (см. рисунок) состоит из генератора шума, мостовой схемы и индикатора баланса моста. Генератор шума выполнен на кремниевом СВЧ диоде V1. на который подано обратное смещение. Высокочастотные шумы, генерируемые диодом V1, усиливаются двухкаскадным широкополосным усилителем на транзисторах V2 и V3. С выхода усилителя шумовой сигнал через симметрирующий трансформатор T1 поступает на мостовую схему.


Она образована резистором R12, верхней и нижней (по отношению к движку) частями переменного резистора R10 и входным сопротивлением антенны, подключаемой к разъему Х2. Индикатор баланса моста (связной приемник любительской радиостанции, перекрывающий диапазон 144- 146 МГц) подключается к разъему XI. Резистор R11 служит для ослабления влияния индикатора на мостовую схему, а конденсаторы С7 и С8 - для компенсации индуктивных составляющих цепей монтажа антенноскопа.

Симметрирующий трансформатор T1 выполнен на кольце типоразмера К7x4x2 из феррита марки М50ВЧ2. Обмотки I-III имеют по 9 витков провода ПЭЛШО 0,3, причем обмотки Iи III наматывают одновременно двумя проводами, а обмотку II - отдельно.

Корпус прибора имеет размеры 60x95x25 мм. Он изготовлен из меди или латуни толщиной 0,5 мм. Внутри имеется одна перегородка с двумя отверстиями для подачи шумового сигнала с симметрирующего трансформатора на мост. В одном отсеке размещают генератор шума и батарею «Крона» для его питания, в другом - высокочастотный мост. Все швы должны быть тщательно пропаяны.

Подключив к антенноскопу связной приемник, убеждаются в наличии шума. Затем к разъему Х2 подключают образцовое безындуктивное сопротивление 50-100 Ом и находят положение движка переменного резистора R10, при котором прослушивается минимум шумов на выходе приемника. После этого подстроечным конденсатором С8 компенсируют индуктивную составляющую монтажа моста (также по минимуму шумов на выходе приемника). Для градуировки шкалы антенноскопа подключают к разъему Х2 образцовые резисторы с сопротивлением 20-150 Ом.

Прибор можно использовать и для определения резонансной частоты антенны. Для этого необходимо на связном приемнике найти такую частоту, на которой шум при балансе моста будет минимальным.

Еще раз об УКВ рефлектометре.

Наверно ни кому не нужно доказывать и убеждать в том, что успех работы в эфире зависит от антенны и от степени ее согласования и настройки.

В большей степени это касается УКВ диапазонов, где уровни сигналов РЛ станций малы, а затухания по фидерным линиям питания антенн велики. В такой ситуации и начинает играть главную роль точность согласования. Произвести такую настройку без УКВ рефлектометра просто невозможно. В литературе на данную тему было предложено достаточно много схем и вариантов КСВ-метров для КВ диапазонов, все они прекрасно работают на частотах до 30 МГц. Что же касается УКВ, то этот вопрос не достаточно освещен. В связи с этим, хочу предложить вниманию радиолюбителей, работающих на УКВ диапазонах, вариант УКВ рефлектометра, достоверно работающего в полосе частот 130-480МГц.

В основу устройства заложен двунаправленный ответвитель на полосковых линиях рис 1:

Он изготавливается из фольгированного стеклотекстолита толщиной 6 мм. Полосковая линия w-1 имеет волновое сопротивление 50 Ом. Параллельно соединенные линии w-2 и w-3, Рассчитываются на волновое сопротивление 100 Ом, Нагружены на безиндуктивное сопротивление 50 Ом

с их противоположных концов снимаются напряжения Uпр и Uобр. Далее эти напряжения выпрямляются диодами D1 и D2. С анодов диодов снимаются постоянные напряжения пропорциональные Uпр. и Uобр. и поступают на схему индикации. Ее можно собрать по схеме рис.2.

Но лучше и удобнее использовать цифровую схему подробно описанную в Радиоаматор №7 2004 г предложенную US5WDQ.

Во всем выше изложенном нет ничего нового, но нужно заострить внимание на том, что, чтобы говорить о какой либо точности измерений на частотах 70см диапазона, ответвитель должен быть выполнен с особой тщательностью и точностью, что не всегда возможно осуществить в радиолюбительских условиях. Исходя из этого, пользуясь предлагаемой методикой изготовления ответвителя можно получить довольно неплохие результаты.

Теперь о некоторых конструктивных особенностях.

Стеклотекстолит с толщиной диэлектрика 6мм выбран не зря, ведь тем более такой материал промышленностью не выпускается. Исходя из формулы рис 3.

Если использовать широко распространенный фольгированный стеклотекстолит

Толщиной 1,5мм то ширина полосковой линии имеющей 50 Ом должна быть 2.7 мм. Уход от этого размера на одну, две десятых мм вызовет уход волнового сопротивления на 5…10 Ом соответственно, что приведет к ощутимым погрешностям в работе ответвителя. При толщине материала 6мм. ширина полосковой линии имеет 11мм. Понятно, что чем шире дорожка, тем легче обеспечить точность размера. 6мм фольгированный стеклотекстолит изготавливается следующим образом: по размерам платы рис.1 вырезаются 4 заготовки из 1.5мм ф.стеклотекстолита. У двух из них металлизация удаляется с двух сторон у двух других только с одной. Заготовки промазываются клеем типа ЭДП собираются в пакет и зажимаются в тиски. После высыхания клея заготовка вынимается из тисков. Чтобы выяснить какая диэлектрическая проницаемость получилась у такого «слоеного пирога» нужно воспользоваться измерителем емкости, измерив емкость получившегося конденсатора. Зная емкость находим диэлектрическую проницаемость из формулы рис.4

У меня получилось 4.7….5. Изходя из полученных данных рассчитываются конструктивные размеры полосковых линий по выше приведенной формуле.

Из полученной заготовки плата ответвителя изготавливается или фото способом или с применением «кмпьютерно-утюжной» технологии или при определенной сноровке простым резаком из ножовочного полотна. Печатную плату ответвителя впаивают в прямоугольную рамку из латунной или медной полосы толщиной 0.8-1мм. На торцевых стенках рамки устанавливают ВЧ раземы соответствующего волнового сопротивления.

После этого рефлектометр нужно проверить. Для этого на вход от передатчика или ГСС подают вч напряжение, а выход нагружают на эквивалентную нагрузку 50 Ом. Можно воспользоваться готовыми вч нагрузками от АЧХ Х1-13, Х1-49, Х1-50. Подбором резистора R1 добиваются показаний КСВ=1. После этого поочередно подключают к выходу нагрузки сопротивлением 75 и 100 Ом показания должны быть 1.5 и 2 соответственно. Настроенный ответвитель закрывают с двух сторон крышками из меди или латуни. Поскольку ответвитель симметричный его вход и выход можно менять местами, учитывая, что выходы Uпр. и Uобр. тоже поменяются местами.

Индикатор выходной мощности трансивера или усилителя мощности ВЧ

На приведенной схеме показан один из самых простых индикаторов, который можно собрать на широкодоступной микросхеме и минимальном количестве деталей.
При настройке необходимо подобрать сопротивление резистора R1, номинал которого зависит от конструкции КСВ-метра и выходного напряжения с него.
Расчет вести из того, что максимальную мощность (100 Ватт) индикатор покажет при входном напряжении на 5-й ножкемикросхемы - 10 Вольт


Используемые компоненты:

Микросхема - LM3915,
светодиоды любого типа, цвет по вашему усмотрению (можно все разного цвета),
резисторы МЛТ-0,125
конденсаторы - любого типа,

Назначение некоторых выводов микросхемы

5 - входной сигнал,
7 - выход опорного напряжения,
8 - регулировка опорного напряжения,
9 - режим работы.

Индикатор поля - волномер

Схема собирается из старых деталей, навесной монтаж прямо на индикаторе, на пластинке облуженного фольгированного текстолита. Может быть весьма полезна при настройке выходных каскадов передатчиков и антенн УКВ-диапазона 144 МГц.


При использовании головки с током полного отклонения 100 мкА, излучение 300 мВт «хэндика» со штатной «резинкой» регистрируется на расстоянии более 10 м, т.е. нескольких длин волн. Катушка - бескаркасная, 4 витка провода 0,5 на оправке 4 мм, отвод - от 3-го витка. Антенна - вертикально стоящий кусок проволоки диаметром 1…2 мм и длиной 0,5…1 м. Подстроечный конденсатор - типа КПВМ-1 с воздушным диэлектриком, к оси припаян указатель шкалы - отрезок провода.

УКВ РЕФЛЕКТОМЕТР

На рис.1 показана конструкция УКВ рефлектометра на плоской коаксиальной линии (рабочий диапазон 100-600 Мгц). КСВ, вносимый самим прибором в линию передачи, порядка 1,1-1,13 в указанном диапазоне. Прибор состоит из отрезка плоской линии 1 и измерительной голой линии 2 с направленным ответвителем 3.

Puc.1

На рис.2 показан основной вертикальный разрез рефлектометра. Наружная поверхность плоской линии сделана из двух дюралевых пластин 5 размером 115х195Х2 мм, соединенных между собой двумя отрезками швеллера 4 размером 2Х18Х25,04мм, длиной 115 мм. Внутренний проводник линии 6 сделан из куска латунной трубки диаметром 9,4 мм, длиной 160 мм, удлиненной с обоих концов ступенчатыми переходами 7, компенсирующими неравномерности самой линии и перехода ее во внешние коаксиальные разъемы 8.

Разъемы крепятся к швеллеру 4 четырьмя винтами М3, соединение их с внутренним проводником 6 делают в зависимости от конструкции самого разъема.

Puc.2

В центре одной из пластин 5 сделано отверстие диаметром 10 мм и над ним крепится измерительная головка прибора. Механически головка состоит из двух отрезков гильзы N 20 и служит основанием 9 для поворотной части головки 10 из гильзы N 24.

В поворотной части головки смонтированы все детали направленного ответвителя: петля связи 3, нагрузочное сопротивление 11, детектор 12 и держатель детектора 13. К дну гильзы 10 припаян диск 14 из латуни 0,8-1,2 мм диаметром 26 мм; обод диска рифленый, так как он служит и ручкой поворота всей головки. На гладкую поверхность диска 14 уложена прокладка из слюды 0,8-0,1 мм, поверх которой наложен еще латунный диск 15, служащий второй обкладкой развязывающего конденсатора головки. Плоскости конденсатора стянуты вместе через слюду при помощи винта 16, проходящего через изолирующую втулку 17. Резьба под М2 для винта 16 сделана в центральной части дна, где обычно располагается капсюль.

В опытном образце рефлектометра сопротивление 11 желательно сделать сменным, поэтому его заземляемый конец крепится в дне гильзы при помощи стопорного винта 18 с резьбой М2. Толщина дна для этой цели вполне достаточна. В повторных конструкциях этот узел можно упростить и сопротивление R1=120-130 ом типа МЛТ впаивать в тонкую боковую стенку гильзы примерно так, как это показано на рис.2.

Держатель детектора 13 имеет внешнюю резьбу М2 и внутреннюю резьбу М3, куда ввинчивается детектор типа ДКИ. Тонкая ножка держателя проходит через отверстие диаметром 4,2 мм в дне гильзы 10 и ввинчивается в резьбу М2 в диске 15 конденсатора развязки. После подбора нужной высоты держателя 13 его положение фиксируют еще контргайкой, под которую одновременно подкладывают лепесток для соединения с микроамперметром.

Петля 3 ответвителя Lc сделана из провода диаметром 0,6 мм, имеет длину 12-13 мм и расстояние между центрами 2,6-2,8 мм. Ее левый конец припаян к проводу вывода сопротивления R1, правый, идущий к детектору, - к малому кольцу диаметром 2,0-2,5 мм, высотой 2-2,5 мм, согнутому из тонкой бронзы или латуни. Кольцо плотно надето на цилиндрический вывод детектора.

Поворот головки 10 желательно каким-либо способом ограничить в пределах 0-180°, так как отсчет ведется только в двух крайних положениях.

Применение рефлектометра. Основное назначение прибора - измерение коэффициента стоячей волны (КСВ), нагрузок и контроль согласования. Для измерения КСВ прибор включают при помощи высокочастотных разьемов между выходом передатчика и кабелем антенны. Головку ответвителя ставят в положение измерения падающей волны (ПВ), т.е. петлей в направлении к генератору, и связь с передатчиком подбирают такой, чтобы получить удобный отсчет по шкале прибора a1. Затем головку поворачивают в направлении к нагрузке для измерения отраженной волны a2. P=Uотр/Uпад=Sqr(a2/a1) где Uотр и Uпад - значения напряжений, на которые реагирует рефлектометр;
a1 и a2 - отклонения прибора;
(Sqr - корень квадратный).

Зная коэффициент отражения Р, можно определить и КСВ в измеряемой линии: K=(1+P)/(1-P) Пусть, например, антенна дает a1=20, a2=5, какой будет КСВ и потеря мощности? P=Sqr(5/20)=0,5 следовательно, K=(1+0,5)/(1-0,5)=3,0 Такие подсчеты нужны лишь в том случае, когда по каким-либо соображениям нельзя добиться согласования и узнать мощность, которую действительно излучает антенна с учетом всех потерь. Однако чаще всего рефлектометр сначала используют как индикатор рассогласования, сопоставляя a1, a2, первое должно быть большим. Если удастся, например, перемещением рефлектора в антенне "волновой канал" добиться того, что a2 будет в 10 раз меньше a1 при незначительном изменении усиления антенны, то дальнейшего уменьшения отраженной волны надо уже добиваться согласующим трансформатором или изменением диаметров и расстояний у сложных петлевых вибраторов. Соотношения a2/a1=10, <- 15, <- 20 соответствуют КСВ=1,93, 1,7, 1,57 и потеря мощности Рп=10%, 8%, 5%. Следовательно, приемлемым надо считать соотношение a2/a1=10, так как более высокие соотношения требуют точности и от самого рефлектометра. Точность его оценивается соотношением a2/a1 без нагрузки на разъеме Р2. В этом случае вся мощность падающей волны должна отразиться обратно, т. е. a2=a1 или a2/a1=1. Отклонение от 1, выраженное в процентах, можно считать погрешностью b прибора. В описываемой конструкции b=1,3% на 400 Мгц, 1,6% на 600 Мгц, 2,2% на 900 Мгц. Уменьшить погрешность в желаемом узком участке диапазона можно подбором длины петли связи Lc и величиной сопротивления нагрузки R1 петли. Например, для диапазона 120-450 Мгц меньшую погрешность дает Lc=19 мм, d=4,0 мм при R1=160-170 ом, Рп=5-6%.

КСВ метр своими руками

С помощью рефлектометра можно настраивать антенны, измерять выходную мощность передатчика, согласовывать между собой промежуточные и выходные каскады, согласовывать выход передатчика на 144 МГц со входом утроителя на 430 МГц и выход утроителя с нагрузкой и т.д. Принципиальная схема рефлектометра для УКВ диапазонов 144/430 МГц приведена на
Рис. 1

Основу устройства составляет двунаправленный ответвитель, выполненный на полосковой линии Е1 с двумя петлями связи L1 и L2. С них и снимаются напряжения прямой и отраженной волн, которые выпрямляются диодами V1 и V2. В зависимости от положения переключателя S1 измеряются либо то, либо другое напряжение. Петли связи нагружены на резистор R2. Резистором R1 регулируется чувствительность прибора. Емкость блокировочных конденсаторов С1 и С2 для диапазона 144 МГц - 0,022 мкФ, для 430 МГц - 220 пФ.

Конструкция линии с петлями связи для диапазонов 144/430 МГц показаны на рис.2а, б соответственно.

Рис. 2

Размеры даны для несимметричного фидера с волновым сопротивлением 75 Ом. Линия и петли связи выполнены на печатных платах из двухстороннего фольгированного стеклотекстолита толщиной 4 мм. При использовании другого материала ширину линии можно найти из формулы:

где Z - волновое сопротивление линии, Ом;
E - диэлектрическая проницаемость используемого материала (для стеклотекстолита Е=5);
D - толщина материала, мм;
b - ширина полосковой линии, мм.

Печатные платы впаивают в прямоугольную рамку из латунной полосы толщиной 0,8...1 мм и шириной 30 мм. Припаивать печатную плату нужно с двух сторон. На торцевых стенках рамки можно укрепить коаксиальные ВЧ разъемы. Если же использовать рефлектометр в какой-то конкретной цепи и не предусматривать его отключение, коаксиальный кабель можно припаять непосредственно.

Вход и выход полосковой линии через проходные конденсаторы или пистоны выводят на противоположную сторону печатной платы. На ней размещают резистор R2, диоды и конденсаторы. Для этого симметрично выводам петель связи на противоположной стороне делают опорные точки - вырезают кольцевые канавки в фольге так, чтобы получились "пятачки" диаметром 5 мм. К этим "пятачкам" и припаивают диоды V1 и V2 и резистор R2.

Диоды устанавливают между выводами петель связи и блокирующими конденсаторами. Конденсаторы применяют типа КМ, КГЛ или, в крайнем случае, СГМ. Их тонкие проволочные выводы отрезают, диоды припаивают к металлизированному участку конденсатора. Вторую обкладку конденсатора припаивают к общей поверхности фольги, как показано на рис.3.

Рис.3

Время пайки должно быть минимальным, так как при перегреве диоды выходят из строя.
Переключатель S1 - МТ-1. Резистор R2 - безиндукционный (УЛИ или МЛТ-0,25).

Стрелка микроамперметра на 100 мкА отклоняется на всю шкалу в положении переключателя "Прямая" при мощности на 144 МГц примерно 50 мВт и на 430 МГц - 100 мВт. При большей мощности чувствительность прибора необходимо понижать, вводя резистор R1.

После монтажа и сборки рефлектометр необходимо настроить. Для этого подают на вход сигнал от передатчика или ГСС, а выход нагружают на эквивалентную нагрузку 75 Ом. Можно воспользоваться готовым ВЧ эквивалентом от измерителей АЧХ Х1-13, Х1-19, Х1-30. Подают такое напряжение ВЧ, чтобы стрелка прибора отклонилась на всю шкалу в положение переключателя S1 "Прямая". Затем переключатель переводят в положение "Отраженная" и подбором резистора R2 добиваются нулевого показания. Эту процедуру повторяют несколько раз с каждым из вновь включаемых резисторов. Настроенный рефлектометр закрывают с двух сторон крышками.

Поскольку рефлектометры симметричны, их входы и выходы можно поменять местами.

Для того чтобы было все понятно когда дойдём до сложных понятий, хочу поговорить о том как эти приборы развивались. Тем, кто описываемое хорошо знает, рекомендую переходить сразу к заключительной части. Антенны не меняют каждый день, поэтому для настройки П-контура передатчика обычно хватает индикатора тока в антенну. У меня был тепловой амперметр показаниям которого я очень доверял:-) Все, скорее всего, помнят, а может даже и делали, очень популярную версию индикатора тока в антенне от Ротхаммеля. Я точно делал. И именно потому что было понятно как делать и что получим в результате. Добавив в схему переключатель мы получили возможность дифференцировано видеть ток туда и обратно, сравнить их. С этого момента индикатор тока превратился в индикатор КСВ

Правда я сразу оценил преимущества двух стрелок (сравнивать легко), поэтому под оплётку пропускал два проводника, делал два выпрямителя и потенциометр сдвоенный.... Соответственно было две измерительных головки. Но всё это по прежнему оставалось индикатором уже хотя бы потому что проводники под оплёткой ложились неровно, два выпрямителя имели не одинаковые характеристики, да и погрешность микроамперметров в индикаторах от магнитофона тоже не добавляли уверенности в точности результата. Всё усугублялось тем, что результат получался после математических вычислений, алгоритм которых (и эффект больших чисел тоже;-() очень сильно искажал результат. Позже народ повсеместно стал переходить на направленные ответвители по причине стабильности положения протравленных полосок на стеклотекстолите относительно центрального проводника, мизерной индуктивности и меньшей зависимостью от частоты. В интернете до сих пор масса вариантов для переноса на фольгированный стеклотекстолит.

Мне помнилось, что среди недостатков его были нелинейная АЧХ, низкая чувствительность и слишком разная (по отношению к коаксиальному кабелю до и после неоднородность, что попросту приводит к тому что фидер разбивается на участки с различными свойствами. Для проверки упомянутого я сделал такую измерительную головку и протестировал её. При включении в разрыв (между антенной и КВС метром моего радио) КСВ ухудшился в среднем до 1,6-1,9 и кроме этого всё упомянутое выше подтвердилось. На 1,8 мгц напряжение "прямой" -1,2 вольта, обратной 0,4, практически граница возможного для ГД507, на 20-ке обратной я уже не видел, прямая 0,5 вольта, выше по частоте вообще ничего. Правда измерял я тестером за 150 гривен. Класс точности огурца. Ни в одном из упомянутых девайсов не было попытки измерить напряжение или ток, только сравнение прямой и обратной волны, поэтому нагрузочных сопротивлений или чего-нибудь для измерения тока нет нигде, просто индикаторы которые показывают относительную разницу. А в Одессе говорят эти две разницы могут быть большими....


Но не всё было так безнадёжно. В начале 90-х я привёз себе "почти" измерительный прибор от OscerBlock именем SWR200B. Уже тогда он измерял от 160 до 2 метров, до 2-х киловатт с точностью до 5% на нагрузках 50 и 75 Ом. За счёт чего и для чего?


Просто добротный коаксиальный ответвитель, прецизионные измерительные сопротивления, высококачественный сдвоенный потенциометр и прилагаемая таблица которая корректирует неравномерность частотной характеристики. На фото видно как нужно выставить потенциометры в зависимости от частотного диапазона и диапазона мощности (в соответствии с таблицей).


А теперь вопрос второй: для чего. Ведь уже поминалось, что антенны каждый день не меняют, передатчик как правило, тоже. Но и передатчиков может быть два. Или даже три, как у меня, например. И параметры антенн изменяются в зависимости от погоды, например мокрый снег, туман, дождь... Или, упаси боже, вообще обрыв. Или замыкание. Одним словом хочется видеть не только то, что антенна работает, но и замечать изменения, если они будут.

В третьей статье я еще раз помяну все эти проблемы которые будут мешать точности измерений уже даже в компьютеризированном приборе и о попытках их нивелировать, а пока предлагаю признать возможность измерения и КСВ и мощности. Причём в следующей статье я буду рассказывать как с помощью Ардуино и математики я попытаюсь получить на экране подводимую от передатчика мощность и мощность которую излучает антенна.


В попытке добиться приемлимой точности и хорошей линейности при детектировании народ помалу стал обращаться к мостовым схемам измерения. Самая простая с использованием в плечах 50-ти омных сопротивлений. Точность отличная, широкополосность замечательная. Одна проблема - проходящая мощность зависит от мощности опорных резисторов:-(Чуть превысил мощность и твои опорные резисторы сгорели. А где же их взять, 200-ваттные то:-(? И работает только как измерительный прибор. Работать в ним в эфире (как оперативный контроль) нельзя из-за большого проходного сопротивления. И еще будучи подключенным к реальной антенне сильно подвержен наводкам со стороны как раз антенны.

С появлением доступных качественных ферросплавов появилась возможность строить трансформаторы тока с достаточно линейной частотной характеристикой. Пропуская эти токи (прямой и обратный) через резисторы (мощность которых может быть в N раз (N - коэффициент трансформации тока) меньшей проходящей через прибор мощности, получаем напряжения в N раз меньше напряжения на антенне. Дальше всё просто: есть напряжение и ток, вот и вычмсляем мощность. Да, всё еще останутся погрешности измерений связанные с нелинейностью детекторов, цепей передачи напряжения, ВЧ развязки, неточности калибровки пределов измерений (при переключении градаций мощности), но уже гораздо ближе к радиолюбителю.


Ведь сделать коаксиальный ответвитель как показанный выше в приборе SWR-200B в домашних условиях почти невозможно. А вот трансформаторы тока - легко. Ниже схема и и фотография детекторного отсека КСВ-метра Daiwa CN101L (смотри пост ранее;)

Резисторы выбраны разные с учётом того, что отражённая волна преодолевает еще и омическое сопротивление кабеля от антенны до прибора. (с учётом нижнего резистора делителя). В вашем исполнении выглядеть это может так


Ну что ж, посмотрим что выйдет из повторения Daiwa CN101L. Одно дело посмотреть как оно сделано, другое - сделать самому. Засучив рукава беру в руки инструмент и пол дня обрабатываю фольгированный стеклотекстолит. Время на рисование и травление печатной платы нет, вернее жалко, режу по живому из головы. Может некрасиво, зато быстро. Поскольку нужно на КВ, с SMD элементами не заморачиваюсь


Больше всего проблем было с отсутствием проходных конденсаторов. Спасибо товарищам по работе, дали старый телевизионный селектор каналов и фен, чтобы аккуратно выпаять. Спасибо Виктор Викторович, спасибо Геннадий Константинович! Побегал, попаял. Через два часа черновик для испытаний готов. Сначала проверяю просто в разрыв между фирменной Daiwa и антенной. Ого! Прямая до 10 вольт, обратная до полувольта в зависимости от КСВ в реальной антенне. Пробовал на всех, что есть: на 160 - Inv L, 80-40-30 - диполя, 20-15-10 по три элемента гексоидр. Показалось что неравномерно. Конечно же, без соответсттвующей экранировки и кривом тестере не очень красиво.


Решил посмотреть что получилось на антенном анализаторе. В нагрузке безиндукционный резистор 50 Ом 20 ватт, смотрю до 30 мгц, потому что анализатор старый и простой - АА330.


И правда. КСВ от 1 до 2, терпимо, а вот сопротивление до 100 Ом. Отмотал 5 витков с трансформаторов тока (изначально было 25, чтобы трансформировать ток от 5 ампер до 200 мА) Так потому что хотел получить максимальное напряжение на опорных резисторах в 10 вольт - удвоенное максимальное напряжение на входах АЦП Ардуино. Ну говорили же про два поддиапазона мощностей! На десятке (и предположительно на 144) картинка улучшилась, но зато стал заметен резонансный "горб" в районе 22 мегагерц. Поскольку феррит не тестировал, доверился цвету маркировки, решил всё-таки определить хотя бы примерно магнитную проницаемость. Не открою Америки, есть онлайн калькулятор Coil32. Мотаю на кольце много витков (до заполнения, потому что точность определения будет выше), измеряю индуктивность.



В окне калькулятора ввожу измеренную индуктивность, размеры кольца, "рассчитать". Ву а ля!

Многовато будет. Беда. Надо раза в два меньше. Но других пока нет. Заказал в интернете T68-6, жёлтеньких, но пока приедут, умру от нетерпения:-) Короче на неделе перемотаю трансформаторы на другие кольца и тогда на 50 омах будет так, как сейчас получилось на 100! Результат вполне приличный. А если смотреть на картинку для сопротивления в 100 Ом так вообще просто замечательный. Как в учебнике. Короче схема с двумя трансформаторами работает отлично. По крайней мере у меня заработала. Без особой надежды на успех (из-за магнитной проницаемости колец) пробую на 144. Завал частотной характеристики очевиден, но КСВ (соотношение) скорее всего покажет честно. Прямая больше 3-х вольт, обратной глазом не видно. Но Ардуино посчитает.


  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

Я уже не раз касался вопроса о локальном подавлении помех как основе нормальной жизни радиста :-). Не последнее место в этой борьбе занимает дифференциальный вход устройства, принимающего сигнал с антенны. Широкополосная комнатная активная рамочная антенна S.v.Ruge повышает эффективность приема радиостанций всех KB диапазонов (3-30 МГц) примерно в 2-3 раза по сравнению с телескопической или проволочной, но комнатной. Находка для тех, у кого антенны нет вообще:-) В связи с тем, что рамочные антенны более чувствительны к магнитной составляющей электромагнитного поля, чем к электрической, электрические бытовые помехи (создаваемые различными бытовыми приборами и другими источниками электрических полей) оказываются значительно ослабленными.

  • EN5R Редьковка

    Один из аспектов аварии на Чернобыльской АЭС связан с эвакуацией населения. С загрязнённых территория было эвакуировано 116000 человек из 188 населённых пунктов. Только из Припяти с помощью 1200 автобусов и трёх специальных железнодорожных поездов было эвакуированно около 45000 человек. Колонна автобусов растянулась на 20 километров. Мы не вправе забывать об этом.
    Сегодня, 30 лет спустя, в этой радиоэкспедиции работают двое бывших жителей Припяти UT7RW Виталий Попов и Ирина Касминина UY2RY. Село Редьковка, несмотря на то что находится за пределами тридцатикилометровой зоны вокруг Чернобыля, выселена из-за чрезмерного уровня радиоактивного заражения.
    One of the aspects of the fccident at the Cherbobyl Nuclear Power Plant (CNPP) is related to the evacuation of the population from the contaminated territory. In total 116000 people had been evacuated from 188 populated areas. Partyculary, threr were about 45000 people who were evacuated just from the city of Pripyat using 1200 buses and 3 special railways trains. The length of the column of buses was about 20 kilometers. e should never forget about it. Today into this activity take part two ex-citizens of Pripyat Vitaly UT7RW and Irina UY2RY The Village Redikovka that is found outside the тридцатикилометровой of the zone around Chernobyl, is evicted because of overweening level of the radioactive contamination. Some fotos below экспедиции в Редьковку 5 лет назад.

  • Зондирование прохождения. Маяк-реверсмаяк

    Группа славутичских радиолюбителей (Андрей UR5RFF, UR5RBH Борис и UY2RA) запустили бета версию системы маяк-реверс маяк. Система зондирует прохождение для 12 частот на всех КВ диапазонах включая WARC и двух УКВ (144 и 430). Трансивер Kenwood управляется пик процессором Ардуино и на указанных ему частотах с указанной мощностью (в соответствии с разрешением) передаёт текст маяка, WW locator и нажатие с изменяющейся мощностью - 2 секунды 100, 2 сек 50, 2 сек 25 и 2 секунды 5 ватт. На УКВ это только 5/1/0.5/0.1 в соответствии с требованием разрешения. Текст маяка сформирован на основании требований регламента и содержит обычно передаваемую при радиолюбительских связях информацию - позывной, мощность сигнала, WW локатор и ссылку на сайт где эти данные мониторятся. Эти передачи длятся первую минуту каждого пятиминутного интервала. На созданном под этот проект сайте отражается текущее состояние маяка (текущая частота, активен ли и т.д) и рапорты для этого маяка в таблице и карта с точками приёма от скиммерсистемы ReversBeacon. Среди выявленных недостатков - разнокалиберные антенны, которые не обеспечивают круговой диаграммы направленности, что вносит искажения в результаты. Но денег на многодиапазонный штырь пока нет:-(Включили как есть. Ниже видео со стороны маяка. Картинку прохождения можно посмотреть на указанном выше сайте.

  • Новости с борта FunCube-1

    Вот только что пролетал новостной спутник Выглядело это так, текст с экрана ниже, а еще ниже картинка TTD.

    09.05.2017 7:54:27, 913078, FM6, New Dashboards for AO73 & EO88 are available @ https://funcube.org.uk/news/
    09.05.2017 7:54:21, 913078, FM5, Nayif-1/EO88 Congratulations on a great launch & welcome to space, it"s FUN up here!
    09.05.2017 7:54:15, 913078, FM4, Congrats to K5LBJ, LASA High School Amateur Radio Club in Austin, Texas, on your 13th year. Go Seniors 2017
    09.05.2017 7:54:04, 913078, FM3, To request a Fitter message for your STEM event pls email Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
    09.05.2017 7:53:58, 913078, FM2, FUNcube-1 sends greetings to the Thanet Guides & Brownies for their "Thinking Day on the Air"

  • Сегодня не очень:-(

    За всё утро на SAT орбитах полный пассив. За исключением автоматических "операторов" типа AO73, который сегодня, кстати, было здорово и долго слышно, активность чуть выше ноля. К своему удивлению не обнаружил активности украинцев через диджик МКС, который тоже хорошо было слышно. Даже с моей антенной не соппровождающей направление на спутник, только с коррекцией эффекта Допплера, сеанс продлился 14 минут. За это время частота изменилась с 145828 до 145818 кгц. Так что те, кто не использует программную коррекцию Допплера в своих приёмниках, теряют почти половину сеанса. Сегодня, правда и терять было нечего. За целое утро - три позывных. ну с моим - четыре

    Fm UY2RA To CQ Via RS0ISS
    :BLNQSL1/1:SQ6OCZ-6,DO1BFS,YO3GXC{UISS53}

    Телеграфных Beacons как всегда много, и слышно хорошо, но новостей, увы, они не предлагают. Пакетные, правда не каждый день, но всё-таки содержат хоть что-то полезное. Например от AO-73: The annual AMSAT-UK Colloquium will take place on 25 - 27 July 2014 at the Holiday Inn, Guildford, UK. See amsat-uk.org/colloquium/colloquium-2014 for more info. :-)

    Одним словом сегодня воскресная тишина.

  • Точ паддль и его недостатки

    Пару постов назад я писал про замечательный точ-падль с подложкой чтобы рука не дёргала ключ при работе . Интерес к нему проявил и мой приятель Саша K2PAL, прислал и мне в подарок платку. Долго ходил мучался, думал какой собственно механический узел применить. Смотрел в интернете, но пока ничего не понравилось. Пока не наступил босой ногой на отрезвнную за ненадобностью в Украине сетевую вилку евростандартa. :-) За десять минут слепил действующий макет и даже получил удовольствие. Новые ощущения - паддль без механической отдачи и "клацания".

  • Волшебная Gray Line

    У многих на слуху словосочетание Gray Line. И все знают, что сигналы удалённых станций, особенно на НЧ диапазонах, следут искать на рассвете и на закате. И мало кто связывает эти два понятия воедино. Мне кажется пора восстановить справедливость в отношении "обиженной" Грэй Лайн:-) Тем, кого интересует только результат (ну и академикам:-), рекомендую пару абзацев пропустить, потому что буду рассказывать давно известные вещи. В течении дня, Солнце "бомбардирует" молекулы газов в верхних и нижних слоях атмосферы иже прилегающих к ней. В результате некоторые электроны покидают родные молекулы и обретают вынужденную свободу, так как некоторое время не могут подключиться к другому атому или молекуле, становятся "БОМЖами". Чем выше солнечная активность, тем больше их становится, тем более плотной становиться ионосфера. Чем больше плотность ионосферы, тем выше граничная частота (её называют MUF, Maximum Used Frequency) которая отражается обратно на Землю. Мы все знаем: именно поэтому ВЧ диапазоны активнее днём:-)

  • После окончания сборки любой антенны или антенной системы необходимо произвести проверку КСВ. Это даст вам уверенность что всё, что Вами сделано - сделано правильно. Данный КСВ-метр предназначен для работы в диапазонах частот 144, 432 и 1296 МГц.

    Конструкция
    Конструкция прибора достаточно проста и понятна. Прибор выполняется из двухстороннего фольгированного стеклотекстолита толщиной 1,5…2,0 мм.
    На рис.1 показан монтаж КСВ-метра. Центральный проводник выполнен из латунного прутка диаметром 10 мм. Линия связи выполняется из вывода диода D1 и D2, так как ваш диод будет практически вставленным в отверстие сделанное вами в перемычке.

    Все соединения корпуса КСВ-метра необходимо тщательно пропаять - это обеспечит жесткость конструкции и стабильность параметров. Перегородка, устанавливаемая между измерительным и приборным отсеками КСВ-метра показана на рис.2.

    Для развязки измерительных цепей конденсаторы С3 и С4, должны быть опорными, например - марки КДО и иметь емкость 3300 или 6800 пф. В качестве диодов D1 и D2 можно применить и другие диоды, но обеспечивающие работу КСВ-метра на этих частотах. Перед установкой диодов в КСВ-метр вам необходимо проверить паспортные данные устанавливаемого диода.

    Правильность выполнения измерительного отсека КСВ-метра в котором располагаются измерительные линии приведена на рис.3.

    Измерение
    Процесс измерения особенностей не имеет, и многократно был описан в различной радиолюбительской литературе. Для облегчения отсчета составлена таблица 1. Все значения, приведенные в таблице 1 были рассчитаны для прибора на 100 мкА.

    Дел......КСВ


    Если у вас есть другой прибор, который отличается от предлагаемого, то вам необходимо произвести перерасчет по формуле:

    КСВ = (Uпрям + Uотр) / (Uпрям - Uотр), где:

    Uпрям. - напряжение прямой волны
    Uотр. - напряжение отраженной волны
    После этого можно составить таблицу, но уже для вашего прибора.

    Модернизация
    Для улучшения параметров вашего прибора вам необходимо доработать резисторы R1, R2, а так же конденсаторы С1, С2 при помощи растворителя смыть с них краску.

    Вывод идущий на корпус у резистора R1, R2, как и вывод конденсаторов С1, С2 должны быть минимально короткими и иметь пайку с обоих сторон фольгированного стеклотекстолита, то есть выводы должны вставлены в предварительно подготовленное вами отверстие, вывод от радиодеталей должен выходить с обратной стороны фольгированного стеклотекстолита на 1…2 мм и только после этого производится пайка. Резисторы R1 и R2 можно использовать в качестве опорных стоек и впаивать в фольгированный стеклотекстолит вертикально.

    Если у вас есть прибор 100 мкА, который рекомендован, то данную конструкцию можно дополнить еще одним отсеком, установив его в КСВ-метр. При правильно собранно вами монтаже и выдержанных размерах, КСВ-метр начинает работать сразу и вам остается только его откалибровать, т.е. составить таблицу с КСВ или нанести эти значения на шкалу вашего прибора.

    Размеры отсека с разъемом и диаметр латунной трубки рассчитаны на волновое сопротивление 75 Ом, а не на 50.Чтобы было 50 ом надо или миллиметров на 5 увеличивать диаметр латунного стержня, или миллиметров на 11 уменьшать каждую сторону (как бы диаметр) отсека с "трубкой".

    Уберите вторые конденсаторы с диодов, лишняя рассогласовка, оставьте по одному на каждом диоде и максимально укоротите их выводы, в первую очередь выводы конденсаторов, которые идут на диоды, но и на землю тоже. Выводы диодов тоже укоротите. Провода до тумблера используйте жесткие, одножильные, по минимальному расстоянию до выводов. С "общего" выхода тумблера припаяйте опять же кратчайшим путем емкость несколько тыс. пф на землю.

    Можно так же еще и параллельно разъему тоже емкость припаять на землю. Все элементы постарайтесь разместить как можно более симметрично. В отсеке с разъемами желательно пропаять землю между стенками по всей длине. Смотреть показания надо только с закрытой верхней крышкой.

    Резисторы вы надеюсь 50 Ом поставили, безиндукционные? По хорошему, их надо подбирать. И параллельно щупам мультиметра на самом мультиметре тоже поставьте небольшую емкость, а еще лучше все-таки использовать головку, а то эти китайские мультиметры....... И тумблер постарайтесь разместить вертикально (т.е. повернуть его на 90 градусов, для "симметрии" :)

    Диоды: ГД501 507 508 Д18 Д28 Д9 Д2 Д310 Д311 Диодоы желательно подобрать по одинаковой ВАХ (вольтамперной характеристике) или близким параметрам.

    Откалибровать прибор по ближайшему ряду резисторов: 50,75, 100,150 ом (включив вместо антенны), соответственно КСВ будет 1;1.5;2.0;3.0. После этого можно прибор проверить на симметричность (поменяв местами вход и выход).

    Простой КСВ-Метр

    Большинство из используемых коротковолновиками КСВ-метров выполнены на основе коаксиального направленного ответвителя, сделанного путем протягивания дополнительного тонкого провода под оплеткой коаксиального кабеля.

    При всех его достоинствах такой рефлектометр получается, как правило, несимметричным (из-за нерегулярного расположения дополнительного провода). Чтобы убедиться в этом, достаточно измерить КСВ любой нагрузки сначала при одном положении входа и выхода КСВ-метра, а затем поменяв их местами. Полученные значения, как правило, не совпадают.

    Описываемый ниже КСВ-метр, имеющий две измерительные линии и возможность полного симметрирования в процессе настройки, разработан и построен на основании конструкции, приведенной К.Сломчиньским (SP5HS) в книге "АВС коротковолновика". Издание WKL 1988 г., Варшава. Рис.1 .

    ?Puc.1 - Принципиальная схема КСВ-метра.

    KBC-метр размещается в коробке, изготовленной из фольгированного текстолита толщиной 1,5...2,0 мм (рис.2).

    ?

    ?

    ?

    Puc.2 - Корпус КСВ-метра.

    ? Главной составной частью КСВ-метра является измерительная линия, расположенная между входным разъемом и выходным разъемом Х2. С измерительной линией сопряжены два стержня: L1, в котором индуцируется напряжение, пропорциональное амплитуде прямой волны и L2, в котором индуцируется напряжение, пропорциональное амплитуде отраженной волны. Эти напряжения выпрямляются VD1 и VD2 и через переключатель и потенциометр передаются на измерительную головку с полным отклонением 100 мкА (типа М24).

    Можно применить и менее чувствительную измерительную головку, но тогда потребуется применить усилитель постоянного тока, выполненный по любой известной схеме.

    Измерительная линия изготовлена из медной трубки диаметром 6 мм и длиной, равной расстоянию между выступающими штырями ВЧ разъемов X1 и Х2 (110 мм). Экраном для измерительной линии служат три полоски фольгирован-ного гетинакса, длиной равной внутреннему расстоянию между боковыми стенками коробки. По обе стороны центральной трубки размещены на двух изоляционных прокладках два стрежня L1 и L2, изготовленные из медной проволоки диаметром 1,5...2,0 мм и длиной около 75 мм. Стержни находятся, примерно, на расстоянии 2 - 3 мм от центральной трубки.

    Разрез измерительной линии показан на рис.3, а заделка концов трубки - на рис.4. На передней стенке коробки размещается микроамперметр. При монтаже схемы следует стараться сделать возможно короткими все соединительные проводники.


    Puc.3 - Разрез измерительной линии.

    Градуировку прибора производим следующим образом. Подключаем передатчик к разъему X1, а к разъему Х2 эквивалент (75 Ом) антенны.

     
    Статьи по теме:
    Цветок Сальвия: описание, посадка и уход, сбор семян
    Не у всех хватает терпения выращивать рассаду сальвии самостоятельно. Ведь после посева проходит от 3 до 4 месяцев, прежде чем на растениях появятся первые цветы. Однако вырастить сальвию из семян довольно просто. Необходимо только учитывать, что сущест
    Как вырастить лук шнитт из семян в открытом грунте и на рассаду посадка и уход фото и описание сортов
    Сегодня я хочу продолжить разговор о многочисленном луковом семействе. В предыдущих статьях мы разобрали вопросы выращивания репчатого лука из и из Репчатый лук - это однолетняя культура, но среди лукового семейства есть и многолетние луки, такие как: шн
    Миниатюрный сад камней своими руками
    Камень. С чем он у вас ассоциируется? Скорее всего, со спокойствием и безмятежностью. Присущее человеку стремление к прекрасному может проявляться по-разному. И не исключением является желание сделать свое семейное гнездышко уютным и красивым. И тут речь
    Строим деревянный сарай своими руками
    С каждым годом всё больше людей обзаводятся дачными участками. Одна из первых задач, с которыми они сталкиваются - строительство сарая. Без него не обходится ни один дачник. Чтобы сарай получился надёжным строением, необходимо правильно подойти к задаче е