Сверлильный станок для печатных плат своими руками: чертежи, фото, видео. Станок для сверления печатных плат из CD-привода TEAC Самодельные сверлильные станки для печатных плат

Надоело, в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус.Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.

На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.

В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его (1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:


Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:



Рабочая зона станочка, виден белый светодиод подсветки:

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной (в разумных пределах) длиной.

Замер размеров рабочей зоны:

На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.

Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.

Регулятор оборотов электродвигателя был собран на небольшой печатной платке:

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе сверлильного станка.


Как то решил автор сделать станочек сверлильный для печат. плат, но вариант такой как цанговый патрон по кругу мотора никого не устраивал и не устроит. Ему надо было что-нибудь получше и потяжелее в сборке, но он никак не брался делать его с самых низов. Каким то удачный образом ему попался под руки поношенный старый минисверлильный, который он взял за основу своей самоделки и восстановил.

В начале станок выглядел очень плачевно, не хотелось автору на него смотреть, не то что трогать. Там была шпиндельская бабка, с заклинившим шпинделем, механизм используемый для перемещения шпина (шпинделя) и колонна с основанием.

Сначала ему пришлось выточить новую колонну, потому что старая извините за выражение была в убогом состоянии:


На основе были заменены и прикручены резиновые сошки или ножки, это уже ваше права как их называть:


Старый стоп винт м4 при начальной попытке отсоединения сломался и причём не так уж и слабо. Ему пришлось сделать новую стоп. ручку с помощью болта м6:




Сначала он решил поставить асинхронник 220В 6Вт, но потом после неудачной попытке был заменен и куплен коллекторник – 12В 12Вт. Прикрепляется к ШБ очень просто, без всяких усилий через переход. пластину:


На неё устанавливается тумблер:


Шкив для движка он сразу брал готовый, для того чтобы не заморачиваться над его изготовкой:


Дальше ему пришлось выточить новый шпиндель. Время которое он затратил на него ушло больше всего, 6-ик ему пришлось делать напильником, как по его словам вышло всё отлично:


Шкив он вытачивал из эбонита:


Механизм перемещения шпинделя в новом виде выглядит вот так:


Сборка окончена, результат:


Светодиодная подсветка будет включаться в месте с двигателем:


Станок после восстановления:

С момента изобретения станка производство различных механизмов и деталей значительно продвинулось. Теперь они являются настоящими помощниками человека, занимающегося обработкой металлов, пластмасс, дерева и других материалов.

Данные устройства позволяют выполнять довольно специфические работы на более качественном уровне.
К данному типу оборудования можно отнести и самодельный сверлильный станок для печатных плат, используемый в радиоэлектронике и смежных областях.

Станки для печатных плат

Печатные платы являются основой всех микросхем. Она предназначена для механического и электрического соединения разных электронных компонентов.
Производят такие платы из диэлектрического материала, на который в последствии и устанавливаются все элементы микроэлектроники.

На платы устанавливаются транзисторы, тиристоры и др. микроэлектроника, т.е. большое количество миниатюрных деталей, которые трудно рассмотреть не вооруженным глазом.

На самые простые платы добавляют дополнительные элементы, путем их прикручивания с последующей пайкой. Естественно для того, чтобы прикрутить элементы, необходимо в плате просверлить отверстия. Проделывать такие отверстия необходимо с ювелирной точностью. При расхождении даже в пару сотен микрон может быть очень ощутимым или же привести к браку изделия, если вы собираетесь расположить на плате большое количество электронных компонентов.

Любители радиоэлектроники часто занимаются изготовлением печатных плат, в которых требуется сверлить большое количество отверстий малого диаметра. Сверление мелких отверстий, диаметром 0,5-1,0 мм, с использованием классического настольного сверлильного, дрели или шуруповерта, является не очень удобным занятием, в ходе которого легко поломать сверло. Как следствие, производить сверление микроотверстий в печатных платах целесообразно при помощи специализированного мини сверлильного станка, с использованием твердосплавных сверл, диаметром 0,7-0,8 мм.
Использование мини сверлильного станка значительно упрощает работу, делая её практически механической, повышая тем самым производительность труда. При этом конструкция не отличается особой сложностью, по этим причинам многие предпочитают собирать их своими руками.
Таким самодельным сверлильным мини станком можно сверлить как печатные платы, так и любые другие заготовки, однако из-за конструкции станка есть ограничения по глубине отверстия.

Конструкция

На первый взгляд схема кажется сложной, однако, это не так. По сути, мини станок не сильно отличается от классического, он меньшего размера с некоторыми нюансами в схеме компоновки конструкции.

Так как данное оборудование обладает не большими размерами, его стоит рассматривать как настольное.
Самодельный вариант оборудования обычно слегка больше, чем покупной, из-за того что при сборке своими руками не всегда есть возможность оптимизировать конструкцию подобрав малогабаритные комплектующие. Но и в таком случае самодельный станок будет иметь малые габариты и вес не более 5 кг.

Видео по сборке

Элементы сверлильного станка

Чтобы собрать мини устройство своими руками, вам потребуется следующее:

  1. Станина;
  2. Переходная стабилизирующая рамка;
  3. Планка для перемещения;
  4. Амортизатор;
  5. Ручка-регулятор высоты;
  6. Крепление для двигателя;
  7. Двигатель;
  8. Цанга (или патрон);
  9. Переходники.

Стоит отметить, что мы описываем самодельный мини сверлильный станок, собираемый из подручных средств своими руками. Заводская конструкция отличается использованием специализированных узлов, которые изготовить собственноручно практически невозможно.
Основой сверлильного мини агрегата, как и любого другого, является станина. Она выполняет функцию основания, на которой будут держаться все узлы. Станиной может являться подручное устройство, например: скелет микроскопа; стойка для проведения линейных измерений цифровым индикатором.

А можно изготовить самому, например легкую деревянную станину – соединив дощечки саморезами, либо же тяжелую и устойчивую – приварив стальной профиль к металлическому листу. Лучше когда вес станины выше основного веса остальных узлов, это позволяет повысить устойчивость агрегата и снижает его вибрацию во время работы.

В качестве двигателя для могут послужить электродвигатели от: кассетных магнитофонов, принтеров, дисководов и другой офисной техники. В качестве крепления для сверл выбирается патрон или цанги. Однако патрон более универсальный, цанга же предусматривает установку сверл только определенных размеров.

Еще одна интересная схема на основе запчастей от CD-ROM и фена с автоматической регулировкой частоты вращения двигателя в зависимости от нагрузки.

Самодельная станина

При изготовлении стальной станины своими руками, под нее можно прикрутить ножки, для фиксации её положения.
Стабилизирующую рамку можно изготовить, например, из рейки или уголка, при этом лучше применять сталь.
Вид планки для перемещения можно подобрать любой, наиболее удобный, при этом лучше совместить её с амортизатором. В некоторых случаях, амортизатор может сам быть такой планкой. Функции этих деталей заключаются в вертикальном смещении оборудования во время работы.
Амортизатор можно изготовить самому или снять с офисной мебели раздвижные рейки, либо прибрести в магазине.
Ручка-регулятор высоты устанавливается на корпус, стабилизирующую рейку или амортизатор.
Крепление для двигателя устанавливают к стабилизирующей рамке, ею может быть, например, простой деревянный брусок. Она нужна для вывода двигателя на нужное расстояние и его надежной фиксации.
Затем двигатель устанавливают непосредственно на крепление.
К двигателю непосредственно присоединяют патрон или цанги, к которым крепятся переходники, используемые для установки сверл. Переходники подбираются индивидуально, в зависимости от вала двигателя, его мощности, типа сверл и т.п.
В заключении можно сказать, что собранный сверлильный мини станок, можно постоянно дорабатывать в ходе эксплуатации. Например, можно наклеить на патрон светодиодную ленту, для подсветки просверливаемых образцов.

О сверлильных станках на заметку

Станок представляет собой единую, жестко зафиксированную конструкцию, и состоит из основных элементов: основания, стойки различных переходников, крепления, электродвигателя и других элементов.
Его задача заключается в повышении точности обработки инструментом и снижение трудоемкости работ: он максимально облегчает труд человека (например, при обработке твердых материалов, таких как металлы), и снижает влияние человеческого фактора в производстве.
Обычные не дорогие мини станки перемещаются в основном по одной оси, например, сверлильные только сверху вниз.
Более дорогие же могут двигаться в нескольких плоскостях, как минимум в двух, вертикальной и горизонтальной. Такие модели уже могут являться автоматическими и полуавтоматическими.

В этой статье мы поделимся с вами разработанным нами станком для сверления печатных плат и выложим все материалы, необходимые для самостоятельного изготовления этого станка. Все что понадобится, это распечатать детали на 3D-принтере, порезать фанеру лазером и закупить некоторые стандартные комплектующие.

Описание конструкции

В основе конструкции довольно мощный 12ти вольтовый двигатель из Китая. В комплекте с двигателем они продают еще патрон, ключ и десяток сверел разного диаметра. Большинство радиолюбителей просто покупают эти двигатели и сверлят платы удерживая инструмент в руках.
Мы решили пойти дальше и на его основе сделать полноценный станок с открытыми чертежами для самостоятельного изготовления.

Для линейного перемещения двигателя мы решили использовать полноценное решение — полированные валы диаметром 8мм и линейные подшипники. Это дает возможность минимизировать люфты в самом ответственном месте.

Основная станина сделана из фанеры толщиной 5мм. Фанеру мы выбрали потому, что стоит очень дешево. Как материал, так и сама резка. С другой стороны ничего не мешает (если есть возможность) просто вырезать все те же самые детали из стали. Некоторые мелкие детали сложной формы напечатаны на 3D-принтере.
Для поднятия двигателя в исходное положение использованы две обычные канцелярские резинки. В верхнем положении двигатель сам отключается при помощи микропереключателя.
С обратной стороны мы сделали место для хренения ключа небольшой пенал для сверел. Пазы в нем имеют разную глубину, что делает удобным хранение сверел с разным диаметром.

Впрочем, все это проще увидеть на видео:

Детали для сборки


Сборка

Весь процесс сборки записан на видео:

Если следовать именно такой последовательности действий, то собирать станок будет очень просто.
Вот так вот выглядит полный набор всех комплектующих для сборки:

Помимо них для сборки потребуется простейший ручной инструмент. Отвертки, шестигранные ключи, плоскогубцы, кусачки и т.д.
Перед тем начинать собирать станок желательно обработать напечатанные детали. Удалить возможные наплывы, поддержки, а также пройти все отверстия сверлом соответствующего диаметра. Фанерные детали по линии реза могут пачкать гарью. Их можно также обработать наждачной бумагой.
После того, как все детали подготовлены начать проще с установки линейных подшипников. Они закрадываются внутрь напечатанных деталей и прикручиваются к боковым стенкам:

Теперь можно собрать фанерное основание. Сначала боковые стенки устанавливаются на основание, а затем вставляется вертикальная стенка. В верхней части также есть дополнительная напечатанная деталь, которая задает ширину в верхней части. При закручивании винтов в фанеру не прикладывайте слишком большое усилие.

В столике на переднем отверстии необходимо сделать зенковку, чтобы винт с головой впотай не мешал сверлить плату. С торца также установлена напечатанная крепежная деталь.

Теперь можно приступить к сборке блока двигателя. Он прижимается двумя деталями и четырьмя винтами к подвижному основанию. При его установке необходимо следить, чтобы отверстия для вентиляции оставались открытыми. На основание он закрепляется при помощи хомутов. Сначала вал продевается в подшипник, а затем на нем защелкиваются хомуты. Также установите винт М3х35, который в будущем будет нажимать на микропереключатель.

Микропереключатель устанавливается на прорези кнопкой в сторону двигателя. Позже его положение можно будет отклибровать.

Резинки накидываются на нижнюю часть двигателя и продеваются до "рогов". Их натяжение надо отрегулировать так, чтобы двигатель поднимался до самого конца.

Теперь можно припаять все провода. На блоке двигателя и рядом с микропереключателем есть отверстия для хомутов, чтобы закрепить провод. Также этот провод можно провести внутри станка и вывести с обратной стороны. Убедитесь, что припаиваете провода на микропереключателе к нормально замкнутым контактам.

Осталось только поставить пенал для сверел. Верхнюю крышку нужно зажать сильно, а нижнюю закрутить очень слабо, используя для этого гайку с нейлоновой вставкой.

На этом сборка окончена!
Из доработок вы можете проклеить фанерные детали, для увеличения жесткости. Можно также сделать регулятор оборотов двигателя.

Первый вариант настольного станочка для сверления плат сделал ещё три года назад. Делал целенаправленно, именно для сверления плат (для другого не предназначен) и исключительно из подручных материалов, делал на «скорую руку» как временное приспособление, потратил на изготовление выходной день. А он взял и «прижился» - оказался необыкновенно удобным в работе.

Диаметр возможных для использования свёрл от 0,5 до 1 мм включительно. Старт спринтерский, финиш без инерции. Подвёл плату, нажал - отверстие готово, отпустил - в исходное положение сверло вернулось само. На всё 2-3 секунды. Через полгода, раз вещь пришлась «ко двору», потратил ещё вечер и придал ей более подобающий и приемлемый вид.

Устройство и принцип работы, как видите, остались прежними. Прошло ещё два года, но так и не собрался сделать что-нибудь более солидное, хотя комплектующие для этого подобрались. От добра, добра не ищут. А вот модернизацию себе позволил.

Появились существенные изменения:

  • опускание происходит при помощи нажатия рукоятки
  • включение электродвигателя происходит при опускании в момент нажатия кнопки о упор
  • стол для сверления на резьбе и может подниматься - опускаться для регулировки расстояния от поверхности просверливаемой платы до «точки» включения электродвигателя
  • электродвигатель запитан постоянным током

С таночек для сверления плат - схема подключения


Основа всего станина и направляющие.

Втулки, их внутренний диаметр лишь на одну - две десятых миллиметра больше диаметра направляющих, материал - эбонит (диэлектрик), выбран не случайно, это своеобразная «развязка» от электрического тока. Из чего сделан поясок, в дальнейшем фиксирующий тягу, догадаться не сложно.

Кнопка - включатель закреплена на пластиковом уголке 2 винтами с гайками, сам уголок соединён с втулками клеем.

В валу электродвигателя имеется отверстие с резьбой М2, приладить цангу труда не составило. И фетровые сальники (с обеих сторон вала) дождались масла.

В качестве «несущего» элемента, к которому крепиться двигатель и который в свою очередь крепиться к втулкам был выбран мебельный уголок (лёгкий, прочный и легко обрабатывается). Диодный мост и конденсатор в защитном кожухе.

Упор состоит из пружинки, с одной стороны которой приклеен именно сам резиновый упор, с другой припаяна гайка, накручивающаяся на винт, который установлен на резьбе в отверстии станины.

Сверлильный стол установлен на винт (его дополнительная функция описана выше).

Ну и, в конце концов, как это всё работает:

Видео процесса сверления

Для тех, кому понравилось: всё то, из чего был собран этот станочек для , ранее лежало по банкам, коробкам и просто углам. Думаю, что намёк более чем очевиден. Желаю Вашим, свёрлам никогда не тупиться, Babay .

Обсудить статью СТАНОК ДЛЯ СВЕРЛЕНИЯ ПЕЧАТНЫХ ПЛАТ

 
Статьи по теме:
Цветок Сальвия: описание, посадка и уход, сбор семян
Не у всех хватает терпения выращивать рассаду сальвии самостоятельно. Ведь после посева проходит от 3 до 4 месяцев, прежде чем на растениях появятся первые цветы. Однако вырастить сальвию из семян довольно просто. Необходимо только учитывать, что сущест
Как вырастить лук шнитт из семян в открытом грунте и на рассаду посадка и уход фото и описание сортов
Сегодня я хочу продолжить разговор о многочисленном луковом семействе. В предыдущих статьях мы разобрали вопросы выращивания репчатого лука из и из Репчатый лук - это однолетняя культура, но среди лукового семейства есть и многолетние луки, такие как: шн
Миниатюрный сад камней своими руками
Камень. С чем он у вас ассоциируется? Скорее всего, со спокойствием и безмятежностью. Присущее человеку стремление к прекрасному может проявляться по-разному. И не исключением является желание сделать свое семейное гнездышко уютным и красивым. И тут речь
Строим деревянный сарай своими руками
С каждым годом всё больше людей обзаводятся дачными участками. Одна из первых задач, с которыми они сталкиваются - строительство сарая. Без него не обходится ни один дачник. Чтобы сарай получился надёжным строением, необходимо правильно подойти к задаче е