Какие скважины называются горизонтальными. Горизонтальное бурение: преимущества и недостатки

student_geolog wrote in September 12th, 2016

Для большинства людей, иметь свою нефтяную или газовую скважину - значит решить финансовые проблемы на всю оставшуюся жизнь и жить ни о чем не думая.
Но так ли просто пробурить скважину? Как она устроена? Этим вопросом, к сожалению, мало кто задается.

Буровая скважины 39629Г находится совсем недалеко от Альметьевска, в поселке Карабаш. После ночного дождя, все вокруг в тумане и перед машиной то и дело пробегали зайцыJ

И вот, наконец, показывалась сама буровая. Там нас уже ждал мастер буровой - главный человек на площадке, он принимает все оперативные решения и несет ответственность за все происходящее при бурении, а также - начальник управления буровых работ.

Принципиально, бурением называют разрушение горных пород на забое (в нижней точке) и извлечение разрушенной породы на поверхность. Буровая представляет собой комплекс механизмов, таких как буровая вышка, буровые насосы, системы очистки бурового раствора, генераторы, жилые помещения и т.д.

Буровая площадка, на которой расположены все элементы (о них мы поговорим ниже) - это очищенная от плодородного слоя земли и отсыпанная песком зона. После завершения работ этот слой восстанавливают и, таким образом, существенный вред экологии не наносится. Слой песка - обязателен, т.к. глина при первых дождях превратится в непроходимую жижу. Я сам видел, как в такой жиже застревали многотонные Уралы.
Но обо всем по порядку.

На скважине 39629Г установлен станок (собственно вышка) СБУ-3000/170 (стационарная буровая установка, максимальная грузоподъемность 170 тонн). Станок произведен в Китае и выгодно отличается от того, что я видел раньше. В России тоже производятся буровые, но китайские станки дешевле как в закупке, так и в обслуживании.

На этой площадке ведется кустовое бурение, оно характерно для горизонтальных и наклонно-направленных скважин. Такой тип бурения заключается в том, что устья скважин расположены на близком расстоянии друг от друга.
Поэтому буровой станок оборудован системой самоперемещения по рельсам. Система работает по принципу «тяни-толкай» и станок как бы передвигает сам себе с помощью гидроцилиндров. На перемещение с одной точки до другой (первые десятки метров) со всеми сопутствующими операциями уходит пара часов.

Поднимаемся на рабочую площадку буровой. Здесь собственно и происходит большая часть работы буровиков. На фото видны трубы буровой колонны (слева) и гидравлический ключ, при помощи которого колонна наращивается новыми трубами и продолжает бурение. Бурение происходит благодаря долоту на конце колонны и вращению, которое передается с помощью ротора.

Особый восторг у меня вызвало рабочее место бурильщика. Когда-то давно, в Республике Коми, я видел бурильщика, который управлял всеми процессами с помощью трех ржавых рычагов и собственной интуиции. Чтобы сдвинуть рычаг с места, он буквально повисал на нем. В итоге, буровой крюк чуть было не зашиб его.
Здесь же бурильщик подобен капитану космического корабля. Он сидит в изолированной кабине, в окружении мониторов и управляет всем с помощью джойстика.

Само собой, кабина отапливается зимой и охлаждается летом. Кроме того, на крыше,тоже стеклянной, предусмотрена защитная сетка на случай падения чего-нибудь с высоты и дворник для очистки стекла. Последний вызывает у буровиков неподдельный восторг:)

Лезем наверх!

Кроме ротора, буровая оборудована системой верхнего привода (сделана в США). Эта система объединяет в себе крановый блок и ротор. Грубо говоря, это кран с приделанным к нему электродвигателем. Система верхнего привода является более удобной, быстрой и современной, нежели ротор.

Видео как работает система верхнего привода:

С вышки открывается отличный вид на площадку и окрестности:)

Кроме красивых видов, в верхней точке буровой можно обнаружить рабочее место верхового помбура (помощника бурильщика). В его обязанности входят работы по установке труб и общий контроль.

Так как верховой находится на рабочем месте всю 12-часовую смену и в любую погоду и любое время года, для него оборудована отапливаемая комната. На старых вышках этого никогда не было!

В случае нештатной ситуации, верховой может эвакуироваться с помощью троллея:

Когда скважина пробурена, ствол несколько раз промывается от разбуренной породы (шлама) и в нее спускают обсадную колонну, которая состоит из множества труб, скрученных между собой. Один из типовых внутренних диаметров обсадной колонны — 146 миллиметров. Длина скважины может достигать 2—3 километров и более. Таким образом, длина скважины превосходит её диаметр в десятки тысяч раз. Примерно такими же пропорциями обладает, например, отрезок обычной нити длиной 2—3 метра.

Трубы подаются по специальному желобу:

После спуска обсадной колонны скважину еще раз промывают и начинается цементирование затрубного пространства (пространства между стенкой скважины и обсадной колонной). Цемент подается на забой и продавливается в затрубное пространство.

После того, как цемент застывает, его проверяют зондом (прибором, спускаемым в скважину) АКЦ - акустический контроль цементажа, скважину опрессовывают (проверяют герметичность), если все ОК, то бурение продолжается - разбуривается цементный стакан на забое и долото идет дальше.

Буква «г» в номере скважины 39629Г означает, что ствол скважины - горизонтальный. От устья до определенного момента скважина бурится без отклонения, но потом с помощью шарнирного отклонителя и/или роторного отклонителя она выходит на горизонталь. Первый представляет собой трубу с шарниром, а второй - долото с направленным соплом, которое отклоняется напором бурового раствора. Обычно, на картинках, отклонение ствола изображается чуть ли не под углом 90 градусов, но в реальности этот угол составляет около 5-10 градусов на 100 метров.

За тем, чтобы ствол скважины шел туда, куда нужно, следят специальные люди - «кривильщики» или инженеры телеметрии. По показаниям естественной радиактивности горных пород, сопротивлению и другим параметрам, они контролируют и корректируют курс бурения.

Схематично все это выглядит вот так:

Любые манипуляции с чем-либо на дне (забое) скважины превращаются в очень увлекательное занятие. Если в скважину нечаянно уронить инструмент, насос или несколько труб, то вполне можно уроненное никогда не достать, после чего на скважине стоимостью в десятки или сотни миллионов рублей можно ставить крест. Покопавшись в делах и историях ремонта, можно найти настоящие скважины-жемчужины, на забое которых лежит насос, поверх которого лежит ловильный инструмент (для извлечения насоса), поверх которого лежит инструмент для извлечения ловил
ьного инструмента. При мне в скважину роняли, к примеру, кувалду:)

Чтобы нефть вообще могла поступать в скважину, нужно проделать отверстия в обсадной колонне и цементном кольце за ней, так как они, отделяют коллектор от скважины. Эти отверстия делают с помощью кумулятивных зарядов; они по сути такие же, как, например, противотанковые, только без обтекателя, потому что лететь им никуда не надо. Заряды пробивают не только обсадную колонну и цемент, но и сам пласт горной породы на несколько десятков сантиметров вглубь. Весь процесс называется перфорацией.

Для сокращения трения инструмента, выноса разрушенной породы, предотвращения осыпания стенок скважины и компенсации разницы пластового давления и давления на устье (внизу давление в разы больше) скважина заполнена буровым раствором. Его состав и плотность подбираются в зависимости от характера разреза.
Буровой раствор прокачивается компрессорной станцией и должен постоянно циркулировать в скважине во избежания осыпания стенок скважины, прихвата инструмента (ситуации, когда колонна заблокирована и ее невозможно ни вращать, ни вытащить - это одна из самых распространенных аварий при бурении) и прочего.

Спускаемся с вышки, идем смотреть насосы.

В процессе бурения буровой раствор выносит шлам (разбуренную породу) на поверхность. Анализируя шлам, буровики и геологи могу делать выводы о породах, которые сейчас проходит скважина. Затем раствор нужно очистить от шлама и снова отправить в скважину работать. Для этого оборудована система очистных установок и «амбар», где очищенный хранится шлам (амбар виден на предыдущем фото справа).

Первыми принимают раствор вибросита - они отделяют самые крупные фракции.

Затем раствор проходит ило- (слева) и пескоотделители (справа):

И, наконец, самая мелкая фракция удаляется с помощью центрифуги:

Затем раствор попадает в емкостные блоки, при необходимости восстанавливаются его свойства (плотность, состав и прочее) и оттуда с помощью насоса подается обратно в скважину.
Емкостной блок:

Буровой насос (произведен в РФ!). Красная штука сверху - гидрокомпенсатор, он сглаживает пульсацию раствора за счет противодавления. Обычно на буровых - два насоса: один рабочий, второй резервный на случай поломки.

Все этим насосным хозяйством заведует один человек. Из-за шума оборудования, всю смену он работает в берушах или защитных наушниках.

«А что у буровиков с бытом?» - спросите вы. Этот момент мы тоже не упустили из внимания!
На этой площадке буровики работают, короткими вахтами по 4 дня, т.к. бурение идет практически в черте города, но жилые модули практически ничем не отличаются от тех, что используют, к примеру, в Заполярье (разве что, в лучшую сторону).

Всего на площадке 15 вагончиков.
Часть из них - жилые, в них буровики живут по 4 человека. Вагончики разделены на тамбур с вешалкой, умывальником и шкафов и непосредственно жилую часть.

Кроме того, в отдельные вагончики (на местном сленге - «балки"») выведены баня и кухня-столовая. В последней мы прекрасно позавтракали и обсудили детали работы. Пересказывать не буду, а то вы меня обвините в совсем уж откровенной рекламе, но скажу, что мне немедленно захотелось остаться в Альметьевске… Обратите внимание на цены!

На буровой мы провели около 2,5 часов и я в очередной раз убедился, что таким сложным и опасным делом, как бурение и нефтедобыча в целом могут заниматься только хорошие люди. Еще мне объясняли, что плохие люди тут не задерживаются.

Друзья, спасибо, что дочитали до конца. Надеюсь, теперь вы представляете себе процесс бурения скважин немного лучше. Если у вас остались вопросы - задавайте их в комментариях. Я сам или с помощью экспертов - обязательно отвечу!

Горизонтальные скважины имеют длительную историю применения во многих нефтегазодобывающих провинциях мира и России. В России с 1947 (65-летний период) было пробурено около 3000 горизонтальных скважин. Текущий темп бурения составляет приблизительно 300 скважин в год.

В первое время сообщалось о впечатляющем увеличении добычи, в 10-20 раз по сравнению с добычей из вертикальных скважин. О меньших коэффициентах увеличения сообщается в последнее время из Татарстана, в 1,3-1,6 раз в пластах, сложенных известняком и в 1,5-3,5 раз в пластах, сложенных песчаником, но в одном случае в Западной Сибири сообщается о коэффициенте увеличения добычи в 10+ раз. На месторождениях тяжелой нефти дебит увеличивается в 5-10 раз. Успешно испытано бурение на депрессии с использованием смеси нефти-азота в качестве бурового раствора. Добыча из горизонтальных скважин, пробуренных на таком растворе на репрессии, увеличивается в 4 раза.

Рисунок 3: Карта Российской Федерации с обозначением некоторых центров нефтяной промышленности

Первые горизонтальные скважины (ГС) появились в России в 1947 г. Их пробурили на Ишимбайском месторождении в Башкирии (столица Уфа, см. карту на Рис. 3) под руководством А.М.Григоряна и В.А.Брагина. Позже разветвленно-горизонтальные скважины (РГС) бурили в Башкирии в 1952-53 гг. на Карташевском нефтяном месторождении НГДУ «Ишимбайнефть». Скважины 65/45 и 66/45 имели соответственно 8 и 10 дополнительных ответвлений, пробуренных до глубины около 600м с максимальным горизонтальным смещением 224м (Библ. 1 и 2 и Рис. 3 и 4). Технология бурения горизонтальных и многоствольных скважин была внедрена в Закарпатье (нынешняя Украина) и Краснодарском крае; объектами бурения были песчано-глинистые последовательности; мощность залежей превышала 40м на глубинах менее 2000м. Большая часть скважин была пробурена на истощенных месторождениях со средними дебитами по нефти меньше 10 т/сут. Полученные дебиты более чем в 20 раз превышали дебиты соседних вертикальных скважин. Лучшие результаты были достигнуты в «Бориславнефти» (Закарпатье, Украина), где 4 горизонтально-разветвленные буровые скважины удвоили дебит по нефти, и в «Черноморнефти» (Южно-Кайрская площадь), на месторождении высоковязкой нефти, где 3 горизонтально-разветвленные скважины дали до 300 т/сут., в то время как из 11 вертикальных скважин получили около 110 т/сут .

Рисунок 5: Вертикальный разрез первой в мире разветвленно-горизонтальной скважины, месторождение ООО «Ишимбайнефть», Башкортостан

Рисунок 4: Вид сверху первой в мире разветвленно-горизонтальной скважины, месторождение ООО «Ишимбайнефть», Башкортостан

Другой пример применения ГС в этот период - использование горизонтальных скважин в системе шахтных стволов на Ярегском месторождении вязкой нефти недалеко от г.Ухта, Республика Коми. Добыча началась из вертикальных скважин, затем из наклонных скважин, и с 1971 г. начали закачку пара в горизонтальные нагнетательные скважины, в то время как нефть добывают из шахтного ствола (Рис. 5).

Рисунок 6: Подземные работы на Ярегском месторождении, Республика Коми, Россия

В течение двадцати лет эта корреляция наиболее обычно использовалась в России. В дальнейшем корреляция была дополнена Джоши (Joshi), где он включил влияние анизотропии в 1988 г., и Ренару и Дюпуи (Renard and Dupuy) в 1990 г.

Технология, использовавшаяся в вышеупомянутых случаях, не давала возможности ориентировать бурение скважины, что приводило к недостаточной точности в достижении объекта бурения. Скважины были обсажены перфорированными хвостовиками. «Грознефтегеофизика» разработала инклинометры, которые могли измерять отклонения буровой скважины в диапазоне 30o - 105o и были испытаны в скважинах до 160м длиной при толщине пласта менее 2м. Григорян, Лепешинский и Михайлов разработали каротажные приборы, устанавливаемые в составе компоновки низа бурильной колонны (КНБК), что позволило измерять ориентацию ствола скважины и пластовые параметры. Опыт в использовании данной технологии позволил увеличить дебиты горизонтальных скважин в 2-20 раз по сравнению с соседними вертикальными скважинами. В 1950-1970 гг. в СССР было пробурено около 80 горизонтальных и многозабойных скважин.

Вслед за этими начальными достижениями, в 1972-1976 гг. 7 ГС были пробурены на турнейские отложения на месторождениях Сиреневское и Тавельское в Татарстане (столица г.Казань), . В течение 1978-1980 гг. были пробурены 3 скважины со схождением забоев (использование системы «Паук») и одной ГС . Применение местной технологии в бурении в береговом секторе месторождения Одопту на острове Сахалин в 1971-73гг., позволило пробурить несколько ГС, включая скважину с рекордным горизонтальным смещением 2345м; ее измеренная конечная глубина равна 3406м.

В конце 1970-ых гг. интерес к горизонтальным скважинам, стимулируемый ценой на нефть $35/баррель, принял международный характер, и крупнейшие сервисные компании начали предоставлять системы бурения, возможность проведения каротажа и инклинометрии. В то же самое время возможность моделировать и прогнозировать поведение ГС улучшилась . В 1987 г. в СССР добыча снижалась, и правительство страны приняло решение начать систематическую программ «Горизонт», чтобы внедрить горизонтальные скважины в разработку месторождений газа и нефти. Первая ГС в Западной Сибири, пробуренная на Салымском месторождении в 1986г., имела длину ствола 376м . Опорную скважину пробурили на Самотлорском месторождении примерно в то же время. Разработка месторождения с использованием горизонтальных скважин становилась успешной, и к 1990 г. была одобрена Центральной комиссией по разработке (ЦКР) для применения в Башкирии, Удмуртии, Татарстане, Тюменской области и Якутии.

Согласно протоколам совещания по разработке с помощью технологии горизонтального бурения, к началу 1990-ых гг. было пробурено 126 горизонтальных скважин, но из них только третья часть была в удовлетворительном состоянии.

Табл. 2 Рост количества горизонтальных скважин в России

Пробуренные скважины

Суммарное количество скважин

Опыт по бурению и эксплуатации ГС показывает, что для достижения высокой эффективности ГС (увеличения дебита в 2-10 раз по сравнению с сопоставимыми вертикальными скважинами), требуется не только учитывать особые геологические и эксплуатационные характеристики пласта, но также и применять эффективные методы бурения и вскрытия пласта. Проблему достижения и увеличения продуктивности ГС можно решить с использованием недавно разработанных технологий, например, бурения на депрессии, бурения с большим отходом от вертикали и применения методов гидроразрыва пласта в горизонтальных скважинах. Планы разработки месторождения при представлении в ЦКР РФ теперь должны включать вариант с применением бурения ГС.

Увеличения охвата пласта

Горизонтальные скважины, безусловно, могут рассматриваться как один из инструментов увеличения охвата пласта воздействием, поскольку имеют значительную протяженность стволов в продуктивном пласте и обеспечивают значительно более существенный контакт с пластом, чем вертикальные скважины. За счет использования горизонтальных скважин, в значительной мере, может быть увеличен коэффициент охвата пласта в залежах с газовыми шапками и подошвенной водой, а также в карбонатных пластах с системой естественных трещин. В залежах с обширными газонефтяными и водонефтяными зонами эффект от применения горизонтальных скважин определяется не только «геометрическим фактором» (охватом горизонтального ствола значительных площадей залежи), но и еще возможностью существенно уменьшить проявление водяных и газовых конусов за счет снижения депрессии на пласт. Тем самым, наряду с улучшением текущих показателей добычи (уменьшение обводненности скважин и газовых факторов), повышается выработка запасов нефти пласта, особенно в его приконтактных зонах. Повышение охвата пласта за счет использования горизонтальных скважин в карбонатных трещиноватых коллекторах достигается за счет обеспечения большего контакта основных фильтрационных каналов пласта - трещин со стенками скважин. При рациональных технологических режимах эксплуатации скважин это позволяет вовлечь в дренирование больший объем пласта. И наконец, за счет горизонтальных скважин возможно вовлечение в разработку низкопродуктивных зон пластов, которые оказываются по экономическим причинам не привлекательными для эксплуатации вертикальными скважинами.

Количество ежегодно вводимых в эксплуатацию в России горизонтальных скважин неуклонно растет (Рис.6) и в 2007 году оно достигло значений около 400 ед. Годовая добыча по введенным в 2007 г. горизонтальным скважинам составила больше 4 млн.т нефти. Горизонтальные скважины используются на различных по своим характеристикам месторождений и для решения разнообразных задач, в том числе и для указанных выше проблем повышения охвата пласта воздействием. Применяются как одиночные горизонтальные скважины на участках, разбуренных вертикальными и наклонно-направленными скважинами, так и системы горизонтальных скважин.

Рисунок 7. Ввод горизонтальных скважин по годам

Результаты бурения горизонтальных скважин наглядно демонстрируют возможности увеличения охвата пласта за счет их применения. Кроме того, довольно эффективно используются боковые стволы с горизонтальным окончанием. В тоже время, горизонтальные скважины не могут рассматриваться как «панацея» для всех без исключения случаев и месторождений. Имеются также отдельные примеры невысокой эффективности горизонтальных скважин вследствие различных причин: не учет геологического строения пласта и его неоднородности, значительной интерференции скважин c дренированием удельных объемов соседних скважин и т.д. Поэтому, возможность применения горизонтальных скважин в каждом конкретном случае должна обосновываться технико-экономическими расчетами показателей разработки месторождения или отдельных его залежей и блоков.

Наклонно направленная скважина с углом искривления ствола 80 0 и выше называется горизонтальной (рисунок 62). Горизонтальная часть ствола вскрывает продуктивный пласт вдоль и остается необсаженной. Длина горизонтального участка равна одному долблению.

Рисунок 62. Горизонтальная скважина

По радиусам кривизны стволов различают 3 типа профиля горизонтальных скважин:

  • большой радиус (более 300м);
  • средний радиус (100-300м);
  • малый радиус (10-60м).

Горизонтальные с большим радиусом могут быть реализованы при кустовом способе бурения с большими отходами и при длине горизонтального участка в 1000м и более. При этом используется стандартная техника и технология наклонно направленного бурения, позволяющая получать интенсивность искривления до 2- 2.5 0 /10м.

Горизонтальные скважины со средним радиусом применяются при бурении как одиночных скважин, так и для восстановления продуктивности эксплуатационных скважин. При этом максимальная интенсивность 3-8 градуса на 10м проходки при длине горизонтального участка 450-900м. Скважины, выполняемые по среднему радиусу, наиболее экономичны, так как имеют меньшую длину ствола (по сравнению с длиной ствола скважины с большим радиусом), обеспечивает более точное попадание в заданную точку на поверхности продуктивного пласта, что весьма важно при наличии тонких нефтяных и газовых пластов.

Горизонтальные скважины с малым радиусом успешно используются при разбуривании месторождении, находящихся на поздней стадии эксплуатации, а также при бурении вторых стволов из ранее пробуренных скважин. Для этого вырезают окно, либо пользуются фрезерным участком обсадной колонны в 8-10м. В этих условиях насосное оборудование помещают в основном стволе, причём желательно, чтобы значение зенитного угла на участке его установки и выше не превышало 20 0 . Интенсивность искривления таких стволов может быть 1- 2 0 на 1 м при радиусах 10-30м, а длина горизонтального участка до 90-150м.

Если бурение по большому радиусу не требует специального оборудования, то проводка стволов со средним и коротким радиусом может быть осуществлена только с применением специальных бурильных труб и укороченных и коротких забойных двигателей, которые позволяют искривлять стволы с радиусом кривизны 25-50 м (вместо 250 м и более). Проектирование горизонтальной скважины начинают с определения протяженности, формы и направления горизонтального участка. Эти параметры зависят от степени неоднородности продуктивного пласта, его толщины, литологии, твердости и устойчивости, угла падения пласта, т.е. от геологической характеристики пласта.

В этом году в ЦВК «Экспоцентр» пройдет международная выставка на тему «Оборудование технологии нефтегазового комплекса». Один из вопросов, который будет представлен – водоизоляция в горизонтальных скважинах.

Сейчас на добывающих районах активно ведется борьба с обводнением и выполняется целый ряд работ по устранению воды в скважинах. Это актуальный вопрос, требующий совершенствования и поиска новых методов.

Для устранению воды в скважинах ставят конкретные задачи:

  1. Изучают систему проведения ремонтных и изоляционных работ, а также водонепроницаемых материалов.

  2. Разрабатывают метод водоизоляции с помощью однородного раствора, перед этим закачав в пласт сжатый газ.

  3. Испытывают новые технологии на основе состава из геля и цемента.

  4. Исследуют вопрос использования струйного насоса для очистки зоны пласта после проведения водоизоляционных работ.

При осуществлении водоизоляционных работ в газовых и нефтяных скважинах используются такие тампонажные материалы: цемент, биополимеры жидкое стекло. Также делают смеси на базе минеральных и органических веществ и совершают тампонажные растворы. Все перечисленное эффективно помогает не допустить скопления воды в скважинах.

Преимущество горизонтальных скважин

В настоящее время в нефтедобывающей промышленности наблюдается медленное истощение запасов и все большая их часть приходится на труднодосягаемые месторождения.

Сложность добычи в том, что они характеризуются высокой вязкостью нефти и шельфами морей. Анализ и эффективность применения горизонтальных скважин подтверждается запасами нефти, которые извлекаются в Западной Сибири и России, что примерно в общей сумме составляет 12 млрд. тонн.

Применение горизонтальных технологий во много раз увеличивает эффективность разработки запасов. Они подразумевают процесс бурения и, собственно, сами горизонтальные скважины. Имеют наиболее значительную протяженную зону.

При строительстве этих скважин используется зарубежное и российское оборудование, а главный показатель – эффективность. Максимально стараются использовать отечественное снаряжение, но в виду отсутствия некоторой необходимой продукции, приходится прибегать к покупке импортного.

Несмотря на то, что строительство горизонтальных скважин затратнее на 10-15%, чем вертикальных, их применение имеет немало преимуществ:

  • уменьшение суммарного количества скважин на месторождениях;

  • рост уровня извлечения нефти;

  • привлечение в разработку новые залежи нефтяных пластов и высоковязкой нефти.

Гидравлический разрыв пласта (ГРП) – популярный метод, интенсивной добычи нефти при разработке низкопроницаемых коллекторов.

Многостадийный ГРП в горизонтальных скважинах (МГРП) – последовательное выполнение гидроразрывов пласта в одной скважине. Этот метод позволяет повышать уровень рентабельности от добычи нефти, в то время как, ГРП в наклонно направленных скважинах не дает должного объёма рентабельности в разработке.

МГРП делится на 2 вида: общая технология и технология применения пакерных компоновок. Продуктивность горизонтальных нефтяных скважин после ГРП значительно повышает уровень дополнительной добычи нефти и сокращает затраты на бурение.

Основная идея проведения ГРП состоит в изменении геометрии участка горизонтального ствола скважины и организации благоприятных условий для следующего ГРП.

Область применения нефтедобывающих скважин с горизонтальными окончаниями достаточно обширная. В нее входит упрощение добычи нефти из труднодосягаемых месторождений, разработка участков сложных пород и т.д.

Такого рода скважины разумно использовать для предварительной промысловой добычи из недр земли.

Перед осуществлением нефтедобычи проводятся следующие действия:

  1. Анализ и оценка целесообразности применения пластов. Для предварительной дегазации высокогазоносных угольных пластов бурение опережающих пластовых скважин – наиболее оптимальный способ понижения газовыделения в очистных забоях и промежуточных выработках угольных шахт. Подходящий диаметр дегазационных скважин равен 80 – 250 мм, а рациональная длина – от 5 до 250 м. скважин для заблаговременной дегазации угольных пластов.

  2. Обобщение условий применения и результативности использования горизонтальных скважин при разработке месторождений газа и нефти доказало, что нынешние технологии и специальное аппаратное обеспечение позволяют бурить скважины почти любой траектории с возможным люфтом не более 2м. Горизонтально разветвленные скважины по сравнению с вертикальными намного эффективнее. Использование таких скважин повышается при снижении мощности пласта и возрастании неоднородности его строения. Одна горизонтальная скважина способна заменить 5 вертикальных, а если учесть фактор неоднородности, то соотношение может быть 1:20.

  3. Прогнозирование возможности использования скважин для добычи метана из угольных пластов. Наиболее развивающимися углеметановыми месторождениями России являются Печорский и Кузнецкий угольный бассейны. Разработан целый комплекс подходов к вскрытию таких мест земли, которые осуществляют профили горизонтальных скважин.

Все перечисленные действия направлены на оценку возможности уместности освоения метаноугольных залежей. Так как задача сложная она требует еще более детального изучения газоотдачи пластов с применением скважин с горизонтальным стволом, при этом следует учитывать множество факторов.

Особенности строения горизонтальной скважины

Конструкция горизонтальной скважины напрямую зависит от геологических условий. Высокая продуктивность достигается за счет бурения скважины простой конструкции породоразрушающим инструментом.

Скважины рекомендуется бурить в коренных горных породах. При выборе конструкции буровых руководствуются принципами безопасности. Помимо этого, от сделанного выбора зависит объем расхода материалов и конечная стоимость строительства.

Также учитывают, что искривленная и вертикальная часть горизонтальной скважины рассмотрена не только со стороны верного выбора конструкции, а и – удовлетворительного забойного давления. Не берется во внимание лишь горизонтальная часть ствола.

Существуют основные требования к горизонтальной скважине:

  • выполненная конструкция не должна допускать разрушение стен;

  • предоставить герметизацию устья;

  • обеспечивать свободный доступ к забою.

От соблюдения данных требований зависит надежность всей конструкции.

Элементы горизонтальной скважины:

  • цементные оболочки;
  • обсадная колонна;
  • наклонная и вертикальная выработка.

Для построения данного типа скважины подбираются такие элементы, с помощью которых поставленная цель достигается без происшествий и позволяет в течение долгого времени эксплуатировать горизонтальную скважину.

Крепление горизонтальных скважин приводит:

  • устойчивость стенок скважины в неустойчивых породах;

  • изолирование зон поглощения промывочной и пластовой жидкости;

  • размежевание интервалов продуктивных горизонтов и их изоляция от водных пластов;

  • формирование должного канала для добычи нефти и газа;

  • установка надежного оборудования для устья.

Изучение горизонтальных скважин

Чтобы получать максимальный объём добычи углеводородов следует использовать новые технологии и проводить исследование горизонтальных скважин.

Тщательное их изучение позволяет добиться результатов:

  • увеличить площадь фильтрации;

  • улучшить технологию подземных газовых хранилищ:

  • приумножить интенсивность закачивания в пласт.

Кроме этого, на основе исследований появляется возможность оценить продуктивное использование горизонтальных скважин в разработке месторождений вязкой нефти при умеренной фильтрации и в тех случаях, когда не выходит провести полноценные буровые работы. Недостатком горизонтальных скважин является затратная стоимость их построения.

Технологии не стоят на месте, и если раньше цена горизонтальных скважин была дороже в 8 раз, чем вертикальных, то сейчас разница сократилась в 2 раза. В нефтяной промышленности, используют метод горизонтального бурения.

Как бурят горизонтальные скважины?

Наиболее популярным является механический способ, который направлен на разрушение породы. Этот вид скважин зачастую бурят в породах высоких категорий, но в последнее время и в породах средней твердости.

Технологии бурения горизонтальных скважин на выставке

Нефтегазовая промышленность стремительно развивается. Представители данной индустрии продемонстрируют свои достижения в нефтегазодобывающей сфере на международной выставке «Нефтегаз» , которая пройдет в ЦВК «Экспоцентр».

Посетить выставку можно весной в городе Москва. Рекомендуется предварительно зарегистрироваться на сайте «Экспоцентра» и получить по электронной почте билет на посещение выставки. Мероприятие посвящено передовым технологиям в данной сфере.

Среди экспонентов есть российские и иностранные представители. Их цель – поддержка и укрепление имиджа компании, установление прямых контактов с заказчиками, и увеличение объёма продаж. Одна из тем, которая будет затронута на проекте в достаточной мере – горизонтальные скважины, которые занимают важное место в нефтегазовой отрасли.

Экспозиция использует новые маркетинговые и выставочные технологии, предоставляя всем присутствующим максимально удобные условия для создания деловых контактов в формате «B2B».

«Нефтегаз» – мощная основа для развития бизнеса и совершенствования технологий.

Существуют два способа горизонтального бурения на нефть и газ. Первый (распространён в США) представляет собой прерывистый процесс проводки скважин с использованием роторного бурения (применяется с начала 20 века). При этом способе с забоя скважины долотом меньшего диаметра, чем диаметр ствола скважин, забуривается углубление под углом к оси скважины на длину бурильной трубы (рис. 2.6) с помощью съёмного или несъёмного клинового либо шарнирного устройства (рис. 2.7, рис. 2.8).

Рис. 2.6.

Рис. 2.7.

Рис. 2.8.

Полученное таким образом направление углубляется и расширяется. Дальнейшее бурение ведётся долотом нормального диаметра с сохранением направления с помощью компоновки низа бурильной колонны, оснащённой стабилизаторами.

Второй способ, предложенный P. A. Иоаннесяном, П. П. Шумиловым, Э. И. Тагиевым и M. T. Гусманом в начале 40-x гг. 20 в., основан на использовании турбобура либо др. забойного двигателя. Этот способ представляет собой непрерывный процесс набора искривления и углубления скважины долотом нормального диаметра. При этом способе для набора искривления используется такая компоновка низа бурильной колонны, при которой на долото в процессе бурения действует сила, перпендикулярная его оси (отклоняющая сила). B этом случае весь процесс наклонно-направленного бурения сводится к управлению отклоняющей силой в нужном азимуте. Создание отклоняющей силы может осуществляться различными путями. Если турбобур односекционный, то для получения необходимой отклоняющей силы достаточно иметь над турбобуром переводник с перекошенными резьбами, либо искривлённую бурильную трубу (рис. 2.9).

Рис. 2.9.

При пропуске турбобура в скважину изогнутая часть компоновки над турбобуром за счёт упругих деформаций стремится выпрямиться, а в сечении изгиба возникает момент силы. Отклоняющая сила в этом случае равняется моменту силы, разделённому на расстояние от сечения изгиба до долота. Интенсивность набора угла искривления при описанной выше компоновке будет невысокой, а предельный угол искривления - менее 30°. Для более интенсивного набора искривления сечение изгиба, где возникает момент упругих сил, переносят ближе к долоту. Для этой цели применяются специальные шпиндели и турбобуры. Так как при таких шпинделях резко увеличивается отклоняющая сила, то интенсивность набора угла искривления и предельная величина искривления существенно увеличиваются.

На интенсивность набора угла искривления влияет также частота вращения долота и скорость подачи бурильной колонны в процессе бурения. Чем выше частота вращения долота и чем меньше скорость подачи бурильной колонны, тем интенсивнее, под действием отклоняющей силы, происходит фрезерование стенки скважины и тем интенсивнее искривление. Наибольшая интенсивность искривления может быть получена при применении в нижней части турбобура эксцентричного ниппеля, который позволяет выводить ствол скважины в горизонтальное положение.

Прямолинейные наклонные участки ствола скважины бурятся с компоновками, оснащёнными стабилизаторами. Ориентирование отклоняющей силы в нужном азимуте может осуществляться визирным спуском бурильной колонны либо с помощью инклинометра при установке над турбобуром диамагнитной трубы и магнитным устройством, расположенным в плоскости действия отклоняющей силы. Указанные методы ориентирования отклоняющей силы должны учитывать угол закручивания бурильной колонны, возникающий из-за реактивного момента турбобура, что в некоторой степени отражается на точности ориентирования. B 80-x гг. распространяются системы телеконтроля, позволяющие в процессе бурения контролировать направление действия отклоняющей силы. За рубежом при наклонно-направленном бурении интервалы набора искривления и выправления кривизны осуществляются в основном турбобурами либо объёмными двигателями, прямолинейные интервалы ствола бурятся роторным способом.

Отклонители

Назначение отклоняющих устройств -- создание на долото отклоняющего усилия или наклона оси долота к оси скважины в целях искусственного искривления ствола скважины в заданном или произвольном направлении. Их включают в состав компоновок низа бурильных колонн. Они отличаются своими особенностями и конструктивным выполнением.

В турбинном бурении в качестве отклоняющих устройств применяют кривой переводник, турбинные отклонители типа ТО и ШО, отклонитель Р-1, отклонитель с накладкой, эксцентричный ниппель и др.; в электробурении -- в основном механизм искривления (МИ); в роторном бурении -- отклоняющие клинья, шарнирные отклонители и др. Рассмотрим некоторые отклонители.

Кривой переводник (рис. 2.10) -- это наиболее распространенный и простой в изготовлении и применении отклонитель при бурении горизонтальных скважин. Он представляет собой толстостенный патрубок с пересекающимися осями присоединительных резьб. Резьбу с перекосом 1...40 нарезают в основном на ниппеле, в отдельных случаях -- на муфте. Кривой переводник в сочетании с УБТ длиной 8... 24 м крепят непосредственно к забойному двигателю. Отклонитель Р-1 (рис. 2.11) выполняется в виде отрезка УБТ, оси присоединительных резьб которой перекошены в одной плоскости и в одном направлении относительно ее оси. Отклонитель Р-1 предназначен для набора зенитного угла до 90° и выше, изменения азимута скважины, зарезки нового ствола с цементного моста и из открытого ствола.

Рис. 2.10.

Отклонитель с накладкой -- это сочетание кривого переводника и турбобура, имеющего на корпусе накладку. Высота накладки выбирается такой, чтобы она не выдавалась за габаритные размеры долота. Отклонитель с накладкой при применении односекционных турбобуров обеспечивает получение больших углов наклона скважины. Его рекомендуется применять в тех случаях, когда непосредственно над кривым переводником необходимо установить трубы малой жесткости (немагнитные или обычные бурильные трубы).

Рис. 2.11.

Отклоняющее устройство для секционных турбобуров представляет переводник, соединяющий валы и корпуса верхней и нижней секции турбобура под углом 1,5...2,0°, причем валы соединяются с помощью муфты.

Турбинные отклонители (ТО) конструктивно выполняются посредством соединения нижнего узла с верхним узлом через кривой переводник, а валов -- через специальный шарнир. Серийно выпускаются турбинные отклонители (рис. 2.12) и шпиндели-отклонители (ШО).


Рис. 2.12. Турбинный отклонитель ТО-2: 1 -- турбинная секция; 2 -- шарнирное соединение; 3 -- шпиндельная секция

Турбинные отклонители имеют следующие преимущества:

· кривой переводник максимально приближен к долоту, что увеличивает эффективность работы отклонителя;

· значительно уменьшено влияние колебания осевой нагрузки на величину отклоняющей силы на долоте, что позволяет получить фактический радиус искривления, близкий к расчетному.

Недостаток турбинных отклонителей -- малая стойкость узла искривленного соединения валов нижнего и верхнего участков отклонителя.

Эксцентричный ниппель представляет собой отклонитель, выполненный в виде накладки, приваренной к ниппелю турбобура. Применяется этот отклонитель при бурении в устойчивых породах, где отсутствует опасность заклинивания или прихвата бурильной колонны.

Упругий отклонитель состоит из специальной накладки с резиновой рессорой. Накладка приваривается к ниппелю турбобура. Этот отклонитель применяют при бурении в породах, где эксцентричный ниппель не применим из-за опасности прихватов.

Механизм искривления -- это отклонитель для бурения наклонно-направленных скважин электробуром. В таких механизмах валы двигателя и шпинделя сопрягаются под некоторым углом, что достигается применением зубчатой муфты сцепления.

Многозабойное бурение

Многозабойное бурение - вид наклонно-направленного бурения, включающий проходку основного ствола с последующим забуриванием и проходкой в его нижней части дополнительных стволов, пересекающих геологическую структуру.

Многозабойное бурение применяется с целью повышения эффективности буровых работ при разведке и добыче полезных ископаемых, достигаемой за счёт увеличения доли полезной протяжённости стволов скважин.

Наиболее широко многозабойное бурение используется при разведке твёрдых полезных ископаемых. При разработке нефтяных месторождений. Многозабойное бурение принято называть разветвлённо-горизонтальным бурением. Впервые это бурение осуществлено в США (1930). Использование забойных двигателей при многозабойном бурении впервые реализовано в CCCP по предложению A.M. Григоряна, B. A. Брагина, K. A. Царевича в 1949.


Рис. 2.13. Способы вскрытия пласта: 1 -- обычная скважина; 2 -- многозабойная скважина; 3 -- продуктивный пласт нефти; 4 -- резервуар для нефти.

Многозабойное бурение целесообразно в сравнительно устойчивых продуктивных пластах мощностью 20 м и более, например в монолитных или с прослоями глин и сланцев нефтеносных песчаниках, известняках и доломитах, при глубинах 1500-2500 м при отсутствии газовой шапки и аномально высоких пластовых давлений. Многозабойное бурение сокращает число обычных скважин благодаря увеличению дренированной поверхности продуктивного пласта. Для проводки многозабойной скважины используется комплекс технических средств и контрольно-измерительной аппаратуры, обеспечивающих проводку стволов в заданном направлении.


Рис. 2.14. Многозабойно-горизонтальная скважина-гигант: 1 -- плавучая буровая установка; 2 -- трубы; 3 -- устье скважины; 4 -- основной ствол; 5 -- ответвления; 6 -- нефтеносный пласт.

Вскрытие нефтяных пластов многозабойными скважинами позволяет увеличить дебиты нефтяных скважин за счёт увеличения поверхности фильтрации, увеличить нефтеотдачу пласта, ввести в промышленную разработку малодебитные месторождения с низкой проницаемостью коллектора или высоковязкой нефтью, повысить приёмистость нагнетательных скважин и точность проводки противофонтанных скважин за счёт перебуривания только нижних её интервалов в случае непопадания первым стволом. B нефтедобывающих районах эксплуатируются скважины с 5-10 ответвляющимися стволами длиной по 150-300 м каждый. Благодаря этому приток нефти на первом этапе эксплуатации в несколько раз больше, чем из обычных скважин. B нашей стране с помощью многозабойного бурения успешно проведены десятки скважин на нефть, разрабатывается и испытывается многозабойное бурение глубоких горизонтальных скважин большой протяжённости (несколько км).

 
Статьи по теме:
Выкройка подушки таксы с размерами
Даже летом таксе может понадобиться комбинезон из непромокаемой плащевки для выхода на улицу под дождем. После прогулки в легкой одежке отпадет необходимость в купании или сушке питомца, достаточно будет промыть ему лапы. Чем ниже опускается температура,
Кварцевый фильтр трансивера
Простой и дешевый фильтр для SSB Воронцов А. RW6HRM предлагает в качестве альтернативы ЭМФ-ам применять простую и главное-дешевую схему кварцевого фильтра. Статья актуальна ввиду дифицита и дороговизны данных элементов. В последнее время очень часто
Питание лдс Экономичный преобразователь для питания лдс
Перед вами очередная конструкция с применением микросхемы 555. Устройство представляет из себя-DC-AC преобразователь напряжения, который предназначен для питания энергосберегающих ламп от пониженного напряжения. Диапазон входных напряжений 8-18Вольт (опти
Как выбрать строительный миксер
Перемешать раствор, лак или краску - подобные задачи возникают на стройке или при домашнем ремонте чуть ли не ежечасно. Выполнить их быстро и первоклассно поможет миксер для бетона. Он являет собой специализированный инструмент, с помощью которого смешива