Принцип работы. Поверхностный эффект в проводнике

Применение эффекта

С др. стороны, Скин-эффект находит применение в практике. На Скин-эффекте основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 Гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На Скин-эффект основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Индукционная нагревательная установка, электротермическая установка для нагрева металлических заготовок или деталей с применением индукционного нагрева./

Также на скин-эффекте основано действие взрывомагнитных генераторов (ВМГ), взрывомагнитных генераторов частоты (ВМГЧ) и в частности ударно-волновых излучателей (УВИ).

Глубина слоя проводника, в котором напряженность электрического поля уменьшается в e раз, называется глубиной скин-слоя. Зависимость глубины скин-слоя от частоты для медного проводника приведена в таблице. - волноводы. поверхностном слое.

Формула для расчёта глубины скин-слоя в металле (приближённая)

Здесь е0 = 8,85419*10-12 Ф/м - абсолютная диэлектрическая проницаемость вакуума, с - удельное сопротивление, c - скорость света, мm - относительная магнитная проницаемость (близка к единице для пара- и диамагнетиков - меди, серебра, и т.п.), щ = 2р * f. Все величины выражены в системе СИ.

Более простая формула для расчета

с - удельное сопротивление, мm - относительная магнитная проницаемость, f - частота.

Всем известно - от плазменного шара током не бьет. Хотя напряжение в десятки тысяч вольт проходит через человека… Почему???

Если подать на плазменный шар очень высокое напряжение - более 100KV - разряды начнут выходить из стеклянной колбы. Опять же, эти искры можно «потрогать», только Вы ничего не почувствуете.

Снимем шар с подставки.

И, наконец, отключим саму подставку от катушки Тесла.

Во всех 4 случаях через человека проходит ток в 100-200KV, но почему же он не оказывает никакого действия? Сила тока маленькая? Нет, включив в цепь >катушка Тесла -> провод -> искра -> человек< лампу накаливания (если в ней будет хотя бы один виток волоска - опыт не получится), можно заставить волосок нагреться.

Ответ прост: высокочастотный ток проходит только по поверхности проводника (коже), вызывая лишь нагревание. Но не стоит думать, что разряд от катушки Тесла полностью безопасен по 2 причинам

1) некоторые искры могут иметь низкую частоту

2) в месте входа искры в тело будет ожог.

Для избежания ожогов необходимо держать в руке небольшой металлический НЕ изолированный предмет (например, отвертку, кусочек фольги или провода).

Во время экспериментов была использована 450W катушку Тесла, включенная на средней мощности, чтобы не допустить повреждение WEB камеры, которая вела съемку.

СКИН система представляет собой надёжный и безопасный комплекс, предназначенный для обогрева трубопроводов, имеющих различную длину, при подводной, подземной и надземной прокладке, а также, в зонах, обладающих повышенной взрывоопасностью.

СКИН система является единственно возможным методом обогрева для трубопроводов без сопроводительной сети, длина которых может составлять до 30 тысяч метров;

· система сконструирована с высокими показателями надёжности и прочности;

· СКИН эффект даёт возможность обогревать магистрали любой протяжённости;

· можно применять в зонах повышенной взрывоопасности;

· элементы для нагрева имеют показатель тепловыделения до 120 Ватт на метр;

· СКИН система работает при температуре до 200 градусов;

· имеется разрешение на применение в зонах повышенной взрывоопасности от Федеральной службы по экологическому, технологическому и атомному надзору и сертификат соответствия ГОСТ Р;

· на внешних частях элементов, которые выделяют тепло, нет потенциала, они не нуждаются в электроизоляции, так как заземлены.

Свойства быстропеременных токов

Определение 1

Токами высокой частоты считают токи, которые имею частоту выше, чем $10000 Гц$. Для этих токов не выполняются условия квазистационарности. В процессе протекания такого тока по проводнику, в проводнике появляются вихревые токи, которые порождаются изменениями магнитного поля с высокой скоростью.

Изменения магнитного поля в проводнике происходят такие, что на его оси вихревой ток имеем направление встречное к основному току, а у поверхности проводника течение этого тока совпадает с направлением основного тока. Значит, ток высокой частоты имеет непостоянную плотность по поперечному сечению. Плотность тока в центре сечения проводника почти равна нулю. Она увеличивается при движении в направлении к наружной поверхности. При очень высокой частоте ток течет по тонкому наружному слою проводника.

Сейчас токи высокой частоты широко применяются. Высокочастотные плавильные печи применяют для быстрого прогрева металлических тел. С помощью высокочастотных токов проводят закаливание стальных деталей. Объект на короткое время размещают внутри катушки с током высокой частоты. Поверхностный слой детали разогревается вихревыми токами, ее внутренность при этом остается холодной. Деталь вынимают из катушки, внутренняя часть быстро отнимает тепло у поверхностного слоя, поверхность быстро охлаждается и закаляется. Глубину прогрева регулируют временем выдержки детали в катушке и частотой тока. После такой процедуры поверхность детали становится твердой и прочной, внутри металл сохраняет упругость и пластичность.

Скин --эффект

Определение 2

Постоянный ток по поперечному сечению проводника распределяется равномерно. У переменного тока из-за индукционного взаимодействия разных элементов тока проходит перераспределение плотности тока по поперечному сечению проводника. Явление, при котором ток преимущественно сосредотачивается в поверхностном слое проводника, называется скин-эффектом .

Пусть мы имеем цилиндрический проводник, по которому течет ток. Вокруг проводника с током образуется магнитное поле. Силовые линии этого поля -- концентрические окружности, центр которых лежит на оси проводника. Если силу тока увеличить, то повысится индукция магнитного поля, но форма силовых линий не изменится. Соответственно, производная $\frac{\partial \overrightarrow{B}}{\partial t}$ направлена по касательной к линии индукции магнитного поля, линии производной также -- окружности, которые совпадают с силовыми линиями. Мы знаем из закона электромагнитной индукции, что:

Вектор напряженности индукционного поля в областях расположенных ближе к оси проводника имеет направление противоположное вектору напряженности электрического поля, которое создает ток, в дальних областях направления этих векторов совпадают. В результате плотность тока уменьшается около оси и увеличивается ближе к поверхности проводника, то есть появляется скин-эффект.

В металлах в виду их высокой проводимости током смещения можно пренебречь в сравнении с током проводимости. Из-за чего проникновение магнитного поля в металл аналогично процессу диффузии в математическом отношении. За основу возьмем уравнение (1) и уравнение (2):

Используем закон Ома:

приравняем правые части выражений (2) и (3) и продифференцируем полученное выражение, в результате имеем:

Или учитывая формулу (1):

Используем известные соотношения:

окончательно получим:

Если ток течет по однородному бесконечному проводнику, который занимает полупространство y$>$0 вдоль оси X, причем поверхность проводника плоская, и можно записать:

В таком случае уравнение (7) преобразуется к виду:

Можно предположить, что:

Подставив выражение (11) в уравнение (10) получим:

Решением уравнения (12) является функция:

где $\alpha =\sqrt{\frac{\omega \sigma {\mu }_0\mu }{2}}$. Возьмем действительную часть выражения (13) и перейдем к плотности тока, используя закон Ома, получим:

Толщина скин-слоя

Объёмная плотность тока максимальна у поверхности проводника. На расстоянии $\triangle =\frac{1}{\alpha }\ \ от\ поверхности\ $она становится в e раз меньше. Почти весь ток находится в $\triangle $ слое, который называют толщиной скин -- слоя. Толщина скин - слоя равна:

При высокой частоте тока толщина скин - слоя весьма мала.

Пример 1

Задание: Во сколько раз уменьшится толщина скин -- слоя меди, если ${\omega }_1={10}^4с^{-1}$, а ${\omega }_2={10}^6с^{-1}$.

Решение:

Толщина скин -- слоя проводника рассчитывается по формуле:

\[\triangle =\sqrt{\frac{2}{\sigma \mu {\mu }_0\omega }}\left(1.1\right).\]

Если дважды записать выражение (1.1) для разных частот тока, то получим:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{\omega }_2}{{\omega }_1}}\left(1.2\right).\]

Проведем вычисления:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{10}^6}{{10}^4}}=10.\]

Ответ: Толщина уменьшится в 10 раз.

Пример 2

Задание: Почему при высокой частоте тока можно убрать проводящий материал из цилиндрической области внутри проводника и оставить только проводящую оболочку?

Решение:

Как было показано в предыдущем примере, с увеличением частоты тока, глубина слоя в котором распространяется ток, становится очень небольшой. То есть ток течет лишь в малой части поперечного сечения проводника около его поверхности (скин - эффект). Следовательно, ничего не изменится, если убрать проводящий материал из цилиндрической области внутри проводника и оставить только цилиндрическую оболочку толщиной скин -- слоя. Если проводник толстый, а частота его невелика, то ток течет по всему поперечному сечению и только немного ослабевает к оси провода. Так, при технической частоте в $50 Гц$ скин -- эффект в обычных проводниках выражается очень слабо.

Скин-эффект (от англ. skin - кожа, оболочка)

поверхностный эффект, затухание электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате которого, например, переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода распределяются не равномерно, а преимущественно в поверхностном слое. С.-э. обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают Вихревые токи , в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.

Чем выше частота ν электромагнитного поля и больше магнитная проницаемость μ проводника, тем сильнее (в соответствии с Максвелла уравнения ми) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля - Ленца). Т. о., чем больше ν, μ и σ, тем сильнее затухание, т. е. резче проявляется С.-э.

В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закону:

Коэффициент затухания, μ 0 -Магнитная постоянная . На глубине х = δ = 1/α амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (σ = 580 ксим/см; μ = 1) σ = 9,4 мм, в стали (α = 100 ксим/см, = 1000) δ = 0,74 мм. При увеличении частоты до 0,5 Мгц δ уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с δ, тем слабее проявляется С.-э.

Для проводников при сильно выраженном С.-э., когда радиус кривизны сечения провода значительно больше δ и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Z s (поверхностного импеданса). Его определяют как отношение комплексной амплитуды (См. Комплексная амплитуда) падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины. Комплексное сопротивление на единицу длины проводника:

где R 0 - активное сопротивление проводника, определяющее мощность потерь в нём, X 0 - индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, l c - периметр поперечного сечения скин-слоя, ω = 2πν; при этом R 0 = X 0 . При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением (См. Волновое сопротивление) проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.

В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины δ скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах С.-э. приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном С.-э. становятся неравноценными с точки зрения их вклада в электрический ток; при l >> δ основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. о., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального С.-э. несколько иные. Поле в скин-слое затухает не экспоненциально (R 0 /X 0 =

В инфракрасной области частот электрон за период изменения поля может не успеть пройти расстояние l. При этом поле на пути электрона за период можно считать однородным. Это приводит опять к закону Ома, и С.-э. снова становится нормальным. Т. о., на низких и очень высоких частотах С.-э. всегда нормальный. В радиодиапазоне в зависимости от соотношений между / и δ могут иметь место нормальный и аномальный С.-э. Всё сказанное справедливо, пока частота со меньше плазменной: ω ne2/m ) 1/2 (n - концентрация свободных электронов, е - заряд, m - масса электрона) (относительно более высоких частот см. ст. Металлооптика).

С.-э. часто нежелателен. В проводах переменный ток при сильном С.-э. протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном С.-э. проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. «Вредное» влияние С.-э. ослабляют уменьшением толщины пластин или ленты, а при достаточно высоких частотах - применением магнитопроводов из магнитодиэлектриков (См. Магнитодиэлектрики).

С др. стороны, С.-э. находит применение в практике. На С.-э. основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На С.-э. основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Лит.: Нетушил А. В., Поливанов К. М., Основы электротехники, т. 3, М., 1956; Поливанов К. М., Теоретические основы электротехники, ч. 3 - Теория электромагнитного поля, М., 1975; Нейман Л. Р., Поверхностный эффект в ферромагнитных телах, Л. - М., 1949. См. также лит. при ст. Металлы .

И. Б. Негневицкий.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Скин-эффект" в других словарях:

    - (поверхностный эффект) эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется… … Википедия

    - (от англ. skin кожа, оболочка) (поверхностный эффект), затухание эл. магн. волн по мере их проникновения в глубь проводящей среды, в результате к рого, напр., перем. ток по сечению проводника или перем. магн. поток по сечению магнитопровода… … Физическая энциклопедия

    - (англ. skin кожа, оболочка + аффект) поверхностный эффект 1) явление протекания тока высокой частоты не по всему сечению сплошного проводника, а преимущ. по его поверхностному слою (электрический скин эффект); примен., напр., при поверхностной… … Словарь иностранных слов русского языка

    - (от англ. skin кожа, оболочка) (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течёт в основном в тонком поверхностном слое… … Энциклопедический словарь

    - (от англ. skin кожа оболочка), (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течет в основном в тонком поверхностном слое… … Большой Энциклопедический словарь

    Скин эффект, скин эффекта … Орфографический словарь-справочник

    Сущ., кол во синонимов: 1 эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

) — явление затухания электромагнитных волн по мере их проникновения в проводящую среду.

Описание

Переменное во времени электрическое поле и связанное с ним магнитное поле не проникают в глубь , а сосредоточены в основном в относительно тонком приповерхностном слое (так называемом скин-слое). Происхождение скин-эффекта объясняется тем, что под действием внешнего переменного поля в проводнике свободные электроны создают токи, поле которых компенсирует внешнее поле в объеме проводника (скин-эффект проявляется у металлов, в плазме, ионосфере, вырожденных полупроводниках и других средах с достаточно большой проводимостью).

Глубина скин-слоя существенно зависит от проводимости, частоты электромагнитного поля и от состояния образца. На малых частотах толщина скин-слоя достаточно велика, убывает с ростом частоты и для металлов на частотах оптического диапазона оказывается сравнимой с длиной волны (столь малым проникновением электромагнитного поля и почти полным его отражением объясняется металлический блеск хороших проводников). Например, толщина скин-слоя для медного проводника при частоте электромагнитного поля в 50 Гц (стандартная частота для «городского» тока) составляет примерно 1 см, при частоте 5 кГц - примерно 0,1 см, а при частоте 0,5 МГц - примерно 10 мкм.

Иногда имеют место ситуации, когда длина свободного пробега электронов превышает толщину скин-слоя, в этом случае говорят об аномальном скин-эффекте (он наблюдается в СВЧ-диапазоне в чистых металлах при низкой температуре) - при таком эффекте рассеяние электронов на поверхности образца мало сказывается на толщине скин-слоя (здесь существенную роль играют электроны с малыми углами скольжения, для которых отражение близко к зеркальному).

При достаточно высоких значениях напряженности переменного электромагнитного поля, когда параметры среды, например проводимость, начинают зависеть от поля, скин-эффект становится нелинейным, т. е. толщина скин-слоя также начинает зависеть от интенсивности электромагнитного поля (наиболее легко нелинейный скин-эффект реализуется в плазме). Пороговые значения амплитуд электромагнитного поля, при которых происходит переход скин-эффекта в нелинейный, зависят от параметров среды и частот.

Автор

  • Разумовский Алексей Сергеевич

Источник

  1. Скин-эффект // Физический энциклопедия / Гл. ред. А.М. Прохоров. Т. 4. - М.: Большая Российская энциклопедия, 1992. С. 541–543.

Если пропустить по проводнику переменный электрический ток высокой частоты, то окажется, что весь ток в проводнике будет протекать по тонкому поверхностному слою. Это явление и называют скин-эффектом. Само название происходит от английского слова, означающего «кожа».

Для того чтобы понять, почему высокочастотный ток течет только по поверхности проводника, рассмотрим достаточно длинный цилиндрический проводник (см. рис.), к концам которого приложено переменное напряжение, изменяющееся во времени с частотой ).

Начнем со случая , т. е. постоянного напряжения, когда по проводнику течет постоянный электрический ток. Причина электрического тока - это электрическое поле, напряженность которого при постоянном напряжении одинакова в любой точке поперечного сечения. Следовательно, постоянный электрический ток равномерно распределен по всему сечению проводника. Ток в проводнике создает вокруг себя магнитное поле 2, силовые линии которого представляют собой концентрические окружности с центром на оси проводника; причем магнитное поле существует не только снаружи, но и внутри проводника. При постоянном токе магнитное поле никак не влияет на распределение тока по сечению.

Иначе обстоит дело в случае переменного электрического тока. Если ток в проводнике меняется во времени, то вместе с ним будет изменяться и магнитное поле. Значит, меняется и поток магнитного поля, проходящий через контур abed, и в контуре возникает электродвижущая сила (ЭДС) магнитной индукции. Легко убедиться (используя «правило буравчика» и правило Ленца), что эта ЭДС всегда работает против тока на участке направлении тока на участке ей.

Поэтому мгновенное значение тока в центре проводника будет меньше, чем на его краю. Чем больше частота переменного тока, тем быстрее во времени меняется магнитное поле, тем больше ЭДС индукций и тем меньше электрический ток в центре проводника. Ток как бы вытесняется магнитным полем на поверхность проводника. При очень высоких частотах ЭДС индукции становится настолько большой, что полностью компенсирует внешнее электрическое поле внутри проводника и весь ток протекает по тонкому поверхностному слою. Это и есть скин-эффект. Точные расчеты позволяют определить толщину скин-слоя на поверхности, по которому течет высокочастотный ток: , где - удельное сопротивление проводника. Например, при частоте толщина скин-слоя в медном проводнике составляет мм.

Скин-эффект возникает не только для высокочастотных токов, изменяющихся во времени по закону синуса или косинуса; самое главное - чтобы ток изменялся во времени. В частности, скин-эффект возникает и в момент подключения проводника к источнику постоянного напряжения. В момент включения в контуре abed возникает большая ЭДС индукции, которая полностью компенсирует внешнее электрическое поле на оси проводника. Поэтому ток сначала появляется на поверхности проводника, затем постепенно нарастает в более глубоких слоях и в последнюю очередь на оси проводника. Этот процесс заканчивается, когда ток равномерно распределится по всему сечению проводника. Такое поведение электрического тока напоминает распространение тепла при нагревании тела: оказывается, что оба этих процесса описываются одинаковыми уравнениями.

В случае быстрого изменения тока обычно вводят характерное время, за которое происходит проникновение тока (и магнитного поля) внутрь проводника, - скиновое время: , где а - радиус проводника. Чем меньше удельное сопротивление проводника, тем дольше ток и магнитное поле будут проникать в проводник.

Что же произойдет в том случае, когда , т. е. в случае, если мы имеем дело со сверхпроводником (см. Сверпроводимость)? Формально скиновое время станет бесконечно большим, магнитное поле не сможет существовать в сверхпроводнике, а ток будет протекать только по его поверхности. Так и происходит на самом деле. Это явление называют эффектом Мейснера (впервые наблюдался в 1933 г. немецким физиком В. Мейснером).

Скин-эффект играет очень важную роль в тех областях науки и техники, где используются высокочастотные или быстро меняющиеся во времени электрические и магнитные поля. Это сверхвысокочастотная электроника, радиотехника, физика плазмы и т. д.

 
Статьи по теме:
Выкройка подушки таксы с размерами
Даже летом таксе может понадобиться комбинезон из непромокаемой плащевки для выхода на улицу под дождем. После прогулки в легкой одежке отпадет необходимость в купании или сушке питомца, достаточно будет промыть ему лапы. Чем ниже опускается температура,
Кварцевый фильтр трансивера
Простой и дешевый фильтр для SSB Воронцов А. RW6HRM предлагает в качестве альтернативы ЭМФ-ам применять простую и главное-дешевую схему кварцевого фильтра. Статья актуальна ввиду дифицита и дороговизны данных элементов. В последнее время очень часто
Питание лдс Экономичный преобразователь для питания лдс
Перед вами очередная конструкция с применением микросхемы 555. Устройство представляет из себя-DC-AC преобразователь напряжения, который предназначен для питания энергосберегающих ламп от пониженного напряжения. Диапазон входных напряжений 8-18Вольт (опти
Как выбрать строительный миксер
Перемешать раствор, лак или краску - подобные задачи возникают на стройке или при домашнем ремонте чуть ли не ежечасно. Выполнить их быстро и первоклассно поможет миксер для бетона. Он являет собой специализированный инструмент, с помощью которого смешива